AdaCore Blog

80 results found for "ARM".

by J. German Rivera Guest Author
Make with Ada 2017- A "Swiss Army Knife" Watch

Make with Ada 2017- A "Swiss Army Knife" Watch

SummaryThe Hexiwear is an IoT wearable development board that has two NXP Kinetis microcontrollers. One is a K64F (Cortex-M4 core) for running the main embedded application software. The other one is a KW40 (Cortex M0+ core) for running a wireless connectivity stack (e.g., Bluetooth BLE or Thread). The Hexiwear board also has a rich set of peripherals, including OLED display, accelerometer, magnetometer, gryroscope, pressure sensor, temperature sensor and heart-rate sensor. This blog article describes the development of a "Swiss Army Knife" watch on the Hexiwear platform. It is a bare-metal embedded application developed 100% in Ada 2012, from the lowest level device drivers all the way up to the application-specific code, for the Hexiwear's K64F microcontroller. I developed Ada drivers for Hexiwear-specific peripherals from scratch, as they were not supported by AdaCore's Ada drivers library. Also, since I wanted to use the GNAT GPL 2017 Ada compiler but the GNAT GPL distribution did not include a port of the Ada Runtime for the Hexiwear board, I also had to port the GNAT GPL 2017 Ada runtime to the Hexiwear. All this application-independent code can be leveraged by anyone interested in developing Ada applications for the Hexiwear wearable device.

Driving a 3D Lunar Lander Model with ARM and Ada

Driving a 3D Lunar Lander Model with ARM and Ada

One of the interesting aspects of developing software for a bare-board target is that displaying complex application-created information typically requires more than the target board can handle. Although some boards do have amazing graphics capabilities, in some cases you need to have the application on the target interact with applications on the host. This can be due to the existence of special applications that run only (or already) on the host, in particular.

#Bareboard    #Embedded Development    #STM32    #Ada   

AdaCore at FOSDEM'15

I was at Bruxelles on January 31st to present the components of GNAT GPL 2015 : SPARK 2014 and GNAT GPL for ARM bare-board. This is not unrelated to a previous blog entry on Tetris in SPARK on ARM Cortex M4, in particular I presented that Tetris demo (I brought some boards with me and despite the simple package, none were broken!). The slides contain technical details on the ravenscar profile (main principles), how to build a program for the stm32f4-discovery board and how to port the runtime. There are also less technical slides such as why we choose the stm32f4 board and photos of some graphical demos. As that could be useful to anyone interested in Ravenscar or in porting the runtime to other boards or other platforms, we've made the slides available here.

#ARM    #Ravenscar    #FOSDEM    #GNATGPL   

The Adaroombot Project

The Adaroombot Project

The Adaroombot project consists of an iRobot CreateⓇ 2 and Ada running on a Raspberry Pi with a Linux OS. This is a great Intro-to-Ada project as it focuses on a control algorithm and a simple serial communications protocol. The iRobot CreateⓇ 2 platform was originally design for STEM education and has great documentation and support - making it very easy to create a control application using Ada. This blog looks at the creation of the project and some cool features of Ada that were learned along the way.

#Raspberry Pi    #ARM    #Linux    #Ada    #Roomba   

Writing on Air

Writing on Air

While searching for motivating projects for students of the Real-Time Systems course here at Universitat Politècnica de València, we found a curious device that produces a fascinating effect. It holds a 12 cm bar from its bottom and makes it swing, like an upside-down pendulum, at a frequency of nearly 9 Hz. The free end of the bar holds a row of eight LEDs. With careful and timely switching of those LEDs, and due to visual persistence, it creates the illusion of text... floating in the air!

#STM32    #Ravenscar    #Ada    #Makers    #Embedded Development   

(Many) More Low Hanging Bugs

We reported in a previous post our initial experiments to create lightweight checkers for Ada source code, based on the new Libadalang technology. The two checkers we described discovered 12 issues in the codebase of the tools we develop at AdaCore. In this post, we are reporting on 6 more lightweight checkers, which have discovered 114 new issues in our codebase. This is definitely showing that these kind of checkers are worth integrating in static analysis tools, and we look forward to integrating these and more in our static analyzer CodePeer for Ada programs.

#Static Analysis    #Libadalang   

by Jonas Attertun Guest Author
Make with Ada 2017: Brushless DC Motor Controller

Make with Ada 2017: Brushless DC Motor Controller

This project involves the design of a software platform that provides a good basis when developing motor controllers for brushless DC motors (BLDC/PMSM). It consist of a basic but clean and readable implementation of a sensored field oriented control algorithm. Included is a logging feature that will simplify development and allows users to visualize what is happening. The project shows that Ada successfully can be used for a bare-metal project that requires fast execution.

#Makers    #MakewithAda    #STM32    #Embedded   

by Lionel Matias Guest Author

Leveraging Ada Run-Time Checks with Fuzz Testing in AFL

Fuzzing is a very popular bug finding method. The concept, very simple, is to continuously inject random (garbage) data as input of a software component, and wait for it to crash. If, like me, you find writing robustness test tedious and not very efficient in finding bugs, you might want to try fuzzing your Ada code.Here's a recipe to fuzz-test your Ada code, using American Fuzzy Lop and all the runtime checks your favorite Ada compiler can provide.Let's see (quickly) how AFL works, then jump right into fuzzing 3 open-source Ada libraries: ZipAda, AdaYaml, and GNATCOLL.JSON.

#Testing    #Ada    #VerificationTools   

GNATprove Tips and Tricks: How to Write Loop Invariants

Having already presented in previous posts why loop invariants are necessary for formal verification of programs with loops, and what loop invariants are necessary for various loops, we detail here a methodology for how users can come up with the right loop invariants for their loops. This methodology in four steps allows users to progressively add the necessary information in their loop invariants, with the tool GNATprove providing the required feedback at each step on whether the information provided is sufficient or not.

#Formal Verification    #SPARK   

Public Ada Training Paris, France Dec 3 - 7, 2018

This course is geared to software professionals looking for a practical introduction to the Ada language with a focus on embedded systems, including real-time features as well as critical features introduced in Ada 2012. By attending this course you will understand and know how to use Ada for both sequential and concurrent applications, through a combination of live lectures from AdaCore's expert instructors and hands-on workshops using AdaCore's latest GNAT technology. AdaCore will provide an Ada 2012 tool-chain and ARM-based target boards for embedded workshops. No previous experience with Ada is required.

Proving Memory Operations - A SPARK Journey

The promise behind the SPARK language is the ability to formally demonstrate properties in your code regardless of the input values that are supplied - as long as those values satisfy specified constraints. As such, this is quite different from static analysis tools such as our CodePeer or the typical offering available for e.g. the C language, which trade completeness for efficiency in the name of pragmatism. Indeed, the problem they’re trying to solve - finding bugs in existing applications - makes it impossible to be complete. Or, if completeness is achieved, then it is at the cost of massive amount of uncertainties (“false alarms”). SPARK takes a different approach. It requires the programmer to stay within the boundaries of a (relatively large) Ada language subset and to annotate the source code with additional information - at the benefit of being able to be complete (or sound) in the verification of certain properties, and without inundating the programmer with false alarms.

Public Ada Training Paris June 3-7, 2019

This course is geared to software professionals looking for a practical introduction to the Ada language with a focus on embedded systems, including real-time features as well as critical features introduced in Ada 2012. By attending this course you will understand and know how to use Ada for both sequential and concurrent applications, through a combination of live lectures from AdaCore's expert instructors and hands-on workshops using AdaCore's latest GNAT technology. AdaCore will provide an Ada 2012 tool-chain and ARM-based target boards for embedded workshops. No previous experience with Ada is required.

Winning DTU RoboCup with Ada and SPARK

The Danish Technical University has a yearly RoboCup where autonomous vehicles solve a number of challenges. We participated with RoadRunner, a 3D printed robot with wheel suspension, based on the BeagleBone Blue ARM-based board and the Pixy 1 camera with custom firmware enabling real-time line detection. Code is written in Ada and formally proved correct with SPARK at Silver level.

#Robotics    #Ada    #SPARK   

Bringing Ada To MultiZone

Bringing Ada To MultiZone

C is the dominant language of the embedded world, almost to the point of exclusivity. Due to its age, and its goal of being a “portable assembler”, it deliberately lacks type-safety, opening up exploit vectors. Proposed solutions are partitioning the application into smaller intercommunicating blocks, designed with the principle of least privilege in mind; and rewriting the application in a type-safe language. We believe that both approaches are complementary and want to show you how to combine separation and isolation provided by MultiZone together with iteratively rewriting parts in Ada. We will take the MultiZone SDK demo and rewrite one of the zones in Ada.

#Ada    #Embedded    #Embedded Development    #Security    #multizone    #Hex-Five   

Witnessing the Emergence of a New Ada Era

For nearly four decades the Ada language (in all versions of the standard) has been helping developers meet the most stringent reliability, safety and security requirements in the embedded market. As such, Ada has become an entrenched player in its historic A&D niche, where its technical advantages are recognized and well understood. Ada has also seen usage in other domains (such as medical and transportation) but its penetration has progressed at a somewhat slower pace. In these other markets Ada stands in particular contrast with the C language, which, although suffering from extremely well known and documented flaws, remains a strong and seldom questioned default choice. Or at least, when it’s not the choice, C is still the starting point (a gateway drug?) for alternatives such as C++ or Java, which in the end still lack the software engineering benefits that Ada embodies..

CuBit: A General-Purpose Operating System in SPARK/Ada

Last year, I started evaluating programming languages for a formally-verified operating system. I've been developing software for a while, but only recently began work in high integrity software development and formal methods. There are several operating system projects, like the SeL4 microkernel and the Muen separation kernel, that make use of formal verification. But I was interested in using a formally-verified language to write a general-purpose OS - an environment for abstracting the underlying hardware while acting as an arbiter for running the normal applications we're used to.

Making an RC Car with Ada and SPARK

Making an RC Car with Ada and SPARK

As a demonstration for the use of Ada and SPARK in very small embedded targets, I created a remote-controlled (RC) car using Lego NXT Mindstorms motors and sensors but without using the Lego computer or Lego software. I used an ARM Cortex System-on-Chip board for the computer, and all the code -- the control program, the device drivers, everything -- is written in Ada. Over time, I’ve upgraded some of the code to be in SPARK. This blog post describes the hardware, the software, the SPARK upgrades, and the repositories that are used and created for this purpose.

#Ada    #SPARK    #Robotics   

by Jessie Glockner Guest Author

Celebrating Women Engineering Heroes - International Women in Engineering Day 2021

Women make up roughly 38% of the global workforce, yet they constitute only 10–20% of the engineering workforce. In the U.S., numbers suggest that 40% of women who graduate with engineering degrees never enter the profession or eventually leave it. Why? The reasons vary but primarily involve socio-economic constraints on women in general, workplace inequities, and lack of support for work-life balance. Sadly, history itself has often failed to properly acknowledge the instrumental contributions of women inventors, scientists, and mathematicians who have helped solve some of our world's toughest challenges. How can young women emulate their successes if they don't even know about them?

Security-Hardening Software Libraries with Ada and SPARK

Security-Hardening Software Libraries with Ada and SPARK

Part of AdaCore's ongoing efforts under the HICLASS project is to demonstrate how the SPARK technology can play an integral part in the security-hardening of existing software libraries written in other non-security-oriented programming languages such as C. This blog post presents the first white paper under this work-stream, “Security-Hardening Software Libraries with Ada and SPARK”.

#SPARK    #STM32    #Embedded   

Ada/SPARK Crate Of The Year 2021 Winners Announced!

In June of 2021 we announced the launch of a new programming competition called Ada/SPARK Crate Of The Year Awards. We believe the Alire source package manager is a game changer for Ada/SPARK, so we want to use this competition to reward the people contributing to the ecosystem. Today we are pleased to announce the results. But first, we want to congratulate all the participants, and the Alire community at large, for reaching 200 crates in the ecosystem in January of this year. We truly believe in a bright future for the Ada/SPARK open-source ecosystem with Alire at the forefront. Reaching this milestone is a great sign, inside and outside the Ada/SPARK community, of the evolution and the energy of the ecosystem.

Ada/SPARK Crate Of The Year 2022 Winners Announced!

In June of 2022 we launched the second edition of the Ada/SPARK Crate Of The Year Awards. We believe the Alire source package manager is a game changer for Ada/SPARK, so we want to use this competition to reward the people contributing to the ecosystem. Today we are pleased to announce the results. But first, we want to congratulate all the participants, and the Alire community at large, for reaching 320 crates in the ecosystem in January of this year. We truly believe in a bright future for the Ada/SPARK open-source ecosystem with Alire at the forefront. Reaching this milestone is a great sign,both inside and outside the Ada/SPARK community, of the evolution and the energy of the ecosystem.

Bare-metal C++ development environment for certifiable safety-critical applications

We are happy to announce the availability of GNAT Pro for C++, a versatile development environment for bare-metal targets capable of supporting different subsets of the C++ language. It constitutes the best choice for safety-critical bare-metal systems that want to reduce complexity, memory footprint and execution-time overhead, paving the way to software certification. GNAT Pro for C++ targets popular hardware in the avionics, defense, railway, and space domains: PowerPC (32 bits), x86 (64 bits), RISC-V (32/64 bits), LEON3 (32 bits) and ARM (32/64 bits).

#C++    #Safety Critical Development    #Certification    #Bare-metal   

GNAT Static Analysis Suite: A Vision for Static Analysis in Ada

You may have noticed that over the past two years, we have made significant updates to our CodePeer product - the most visible change being the renaming of the product itself, now branded as “GNAT Static Analysis Suite”. For those who are already using the product and are looking to use the new version, it may be a good time to step back and share our vision, at AdaCore, for static analysis.

#Static Analysis    #GNATSAS    #CodePeer    #GNATcheck   

Memory Safety in Rust

Informally, memory safety in a program means that each data access is well behaved; i.e., is consistent with the item’s data type, does not impinge on any storage locations beyond the data value’s boundaries, and, if the program is multithreaded, does not produce an inconsistent or corrupted value. Memory safety violations result in undefined behavior, which is a Bad Thing: instances like the notorious “buffer overrun” can turn an otherwise safe and secure program into a ticking virtual time bomb. Some of the most eventful malware attacks in recent years are due to memory safety violations, and the topic has moved from techno-geek subreddits into mainstream discourse. Anyone developing or acquiring software, especially for applications with high assurance requirements, needs to pay attention.

#Rust    #memory safety   

Getting Started with Renode: Simulating an Ada STM32F429disco Blinky Firmware.

I recently watched the talks from the 28th Ada-Europe International Conference on Reliable Software Technologies (AEiC 2024), which was held in Barcelona last June.One talk that stood out was "HiRTOS: a Multicore RTOS Written in SPARK Ada" by J. German Rivera. In his presentation, he mentioned running HiRTOS on Renode, an open-source simulation and virtual development framework for complex embedded systems (https://github.com/renode/renode).

#Renode