How Do We Use CodePeer at AdaCore
A question that our users sometimes ask us is "do you use CodePeer at AdaCore and if so, how?". The answer is yes! and this blog post will hopefully give you some insights into how we are doing it for our own needs.
A question that our users sometimes ask us is "do you use CodePeer at AdaCore and if so, how?". The answer is yes! and this blog post will hopefully give you some insights into how we are doing it for our own needs.
My colleague, Carl Brandon, and I have been running the CubeSat Laboratory at Vermont Technical College (VTC) for over ten years. During that time we have worked with nearly two dozen students on building and programming CubeSat nano satellites. Because of their general inexperience, and because of the high student turnover rate that is natural in an educational setting, our development process is often far from ideal. Here SPARK has been extremely valuable to us. What we lack in rigor of the development process we make up for in the rigor of the SPARK language and tools. In November 2013 we launched a low Earth orbiting CubeSat. The launch vehicle contained 13 other university built CubeSats. Most were never heard from. One worked for a few months. Ours worked for two years until it reentered Earth's atmosphere as planned in November 2015.
MISRA C is the most widely known coding standard restricting the use of the C programming language for critical software. For good reasons. For one, its focus is entirely on avoiding error-prone programming features of the C programming language rather than on enforcing a particular programming style. In addition, a large majority of rules it defines are checkable automatically (116 rules out of the total 159 guidelines), and many tools are available to enforce those. As a coding standard, MISRA C even goes out of its way to define a consistent sub-language of C, with its own typing rules (called the "essential type model" in MISRA C) to make up for the lack of strong typing in C.
Like last year, we've sent a squad of AdaCore engineers to participate in the celebration of Open Source software at FOSDEM. Like last year, we had great interactions with the rest of the Ada and SPARK Community in the Ada devroom on Saturday. That's what we have to say about it.
In Part 1 of this blog post I discussed why I chose to implement this application using the Ada Web Server to serve the computed fractal to a web browser. In this part I will discuss a bit more about the backend of the application, the Ada part.
The is the first part of a multiple part post that covers the development of the AdaFractal project. The idea was to create fractals in Ada. Here we will cover how to use AWS to create a flexible and portable way to display the generated fractals without using bulky graphics libraries.
Over the past several years, a great number of public announcements have been made about companies that are either studying or adopting the Ada and SPARK programming languages. Noteworthy examples include Dolby, Denso, LASP and Real Heart, as well as the French Security Agency.
The promise behind the SPARK language is the ability to formally demonstrate properties in your code regardless of the input values that are supplied - as long as those values satisfy specified constraints. As such, this is quite different from static analysis tools such as our CodePeer or the typical offering available for e.g. the C language, which trade completeness for efficiency in the name of pragmatism. Indeed, the problem they’re trying to solve - finding bugs in existing applications - makes it impossible to be complete. Or, if completeness is achieved, then it is at the cost of massive amount of uncertainties (“false alarms”). SPARK takes a different approach. It requires the programmer to stay within the boundaries of a (relatively large) Ada language subset and to annotate the source code with additional information - at the benefit of being able to be complete (or sound) in the verification of certain properties, and without inundating the programmer with false alarms.
Byron Cook, who founded and leads the Automated Reasoning Group at Amazon Web Services (AWS) Security, gave a powerful talk at the Federated Logic Conference in July about how Amazon uses formal methods for ensuring the security of parts of AWS infrastructure. In the past four years, this group of 20+ has progressively hired well-known formal methods experts to face the growing demand inside AWS to develop tools based on formal verification for reasoning about cloud security. What is unique so far is the level of investment at AWS in formal verification as a means to radically eliminate some security problems, both for them and for their customers. This is certainly an approach we're eager to support with our own investment in the SPARK technology.
The challengeAre you ready to develop a project to the highest levels of safety, security and reliability? If so, Make with Ada is the challenge for you! We’re calling on embedded developers across the globe to build cool embedded applications using the Ada and SPARK programming languages and are offering over $8000 in total prizes. In addition, eligible students will compete for a reward of an Analog Discovery 2 Pro Bundle worth $299.99!
This course is geared to software professionals looking for a practical introduction to the Ada language with a focus on embedded systems, including real-time features as well as critical features introduced in Ada 2012. By attending this course you will understand and know how to use Ada for both sequential and concurrent applications, through a combination of live lectures from AdaCore's expert instructors and hands-on workshops using AdaCore's latest GNAT technology. AdaCore will provide an Ada 2012 tool-chain and ARM-based target boards for embedded workshops. No previous experience with Ada is required.
I was looking for a topic for my master thesis in embedded systems engineering when one of my advisor proposed the idea of programming a control system for autonomous trains in Ada. Since I am fascinated by the idea of autonomous vehicles I agreed immediately without knowing Ada.
When I bought the TinyFPGA-BX board, I thought it would be an opportunity to play a little bit with FPGA, learn some Verilog or VHDL. But when I discovered that it was possible to have a RISC-V CPU on it, I knew I had to run Ada code on it.
We are happy to announce that, AdaCore, alongside Altran and Jaguar Land Rover will be major sponsors of the fifth edition of the renowned High Integrity Software Conference on the 6th November in Bristol!
We are very proud to announce the availability of our new Ada and SPARK learning platform learn.adacore.com, which will replace AdaCoreU(niversity) e-learning platform. Learn all about it in this blog post.
Calling all members of the Ada and SPARK community, we are pleased to announce that GNAT Community 2018 is here! adacore.com/download
ANSSI, the French national security agency, has published the results of their work since 2014 on designing and implementing an open-hardware & open-source USB key that provides defense-in-depth against vulnerabilities on the USB hardware, architecture, protocol and software stack. In this project called WooKey, Ada and SPARK are key components for the security of the platform. This is a very compelling demontration of both the usability and the power of safe languages and formal verification to develop secure systems.
There is a long-standing debate about which phase in the Software Development Life Cycle causes the most bugs: is it the specification phase or the coding phase? A recent study by NIST shows that, in the software industry at large, coding bugs are causing the majority of security issues. Choosing a safer language like Ada or SPARK is a critical component for reducing these vulnerabilities that result from simple mistakes. In a new freely available booklet, we explain how these languages and the associated toolsets can be used to increase the security of software.
Last week, the programmer Hillel posted a challenge (the link points to a partial postmortem of the provided solutions) on Twitter for someone to prove a correct implementation of three small programming problems: Leftpad, Unique, and Fulcrum.
PolyORB, AdaCore's versatile distribution middleware, now lives on Github. Its new home is https://github.com/AdaCore/polyorb