AdaCore Blog

An Insight Into the AdaCore Ecosystem

by Yannick Moy
Verified, Trustworthy Code with SPARK and Frama-C

Verified, Trustworthy Code with SPARK and Frama-C

Last week, a few of us at AdaCore have attended a one-day workshop organized at Thales Research and Technologies, around the topic of "Verified, trustworthy code - formal verification of software". Attendees from many different branches of Thales (avionics, railway, security, networks) were given an overview of the state-of-practice in formal verification of software, focused on two technologies: the SPARK technology that we develop at AdaCore for programs in Ada, and the Frama-C technology developed at CEA research labs for programs in C. The most interesting part of the day was the feedback given by three operational teams who have experimented during a few months with either SPARK (two teams) or Frama-C (one team). The lessons learned by first-time adopters of such technologies are quite valuable.

#SPARK    #Formal Methods   

by Yannick Moy

The Most Obscure Arithmetic Run-Time Error Contest

Something that many developers do not realize is the number of run-time checks that occur in innocent looking arithmetic expressions. Of course, everyone knows about overflow checks and range checks (although many people confuse them) and division by zero. After all, these are typical errors that do show up in programs, so programmers are aware that they should keep an eye on these. Or do they?

#Formal Verification    #SPARK   

by Claire Dross

Automatic Generation of Frame Conditions for Record Components

Formal verification tools like GNATprove rely on the user to provide loop invariants to describe the actions performed inside loops. Though the preservation of variables which are not modified in the loop need not be mentioned in the invariant, it is in general necessary to state explicitly the preservation of unmodified object parts, such as record fields or array elements. These preservation properties form the loop’s frame condition. As it may seem obvious to the user, the frame condition is unfortunately often forgotten when writing a loop invariant, leading to unprovable checks. To alleviate this problem, the GNATprove tool now generates automatically frame conditions for preserved record components. In this post, we describe this new feature on an example.

#Formal Verification    #SPARK   

by Pierre-Marie de Rodat
C library bindings: GCC plugins to the rescue

C library bindings: GCC plugins to the rescue

I recently started working on an Ada binding for the excellent libuv C library. This library provides a convenient API to perform asynchronous I/O under an event loop, which is a popular way to develop server stacks. A central part of this API is its enumeration type for error codes: most functions use it. Hence, one of the first things I had to do was to bind the enumeration type for error codes. Believe it or not: this is harder than it first seems!

#Code generation    #Ada   

by Yannick Moy

GNATprove Tips and Tricks: Using the Lemma Library

A well-know result of computing theory is that the theory of arithmetic is undecidable. This has practical consequences in automatic proof of programs which manipulate numbers. The provers that we use in SPARK have a good support for addition and subtraction, but much weaker support for multiplication and division. This means that as soon as the program has multiplications and divisions, it is likely that some checks won't be proved automatically. Until recently, the only way forward was either to complete the proof using an interactive prover (like Coq or Isabelle/HOL) or to justify manually the message about an unproved check. There is now a better way to prove automatically such checks, using the recent SPARK lemma library.

#Formal Verification    #SPARK   

by Florian Schanda Guest Author

SPARKSMT - An SMTLIB Processing Tool Written in SPARK - Part I

Today I will write the first article in a short series about the development of an SMTLIB processing tool in SPARK. Instead of focusing on features, I intend to focus on the how I have proved absence of run-time errors in the name table and lexer. I had two objectives: show absence of run-time errors, and do not write useless defensive code. Today's blog will be about the name table, a data structure found in many compilers that can map strings to a unique integer and back. The next blog post will talk about the lexical analyzer.

#Dev Projects    #Formal Verification    #SPARK