GNAT GPL 2017 is out!
For those users of the GNAT GPL edition, we are pleased to announce the availability of the 2017 release of GNAT GPL and SPARK GPL.
For those users of the GNAT GPL edition, we are pleased to announce the availability of the 2017 release of GNAT GPL and SPARK GPL.
Updated July 2018
Two years ago, we redeveloped the code of a small quadcopter called Crazyflie in SPARK, as a proof-of-concept to show it was possible to prove absence of run-time errors (no buffer overflows, not division by zero, etc.) on such code. The researchers Martin Becker and Emanuel Regnath have raised the bar by developing the code for the autopilot of a small glider in SPARK in three months only. Their paper and slides are available, and they have released their code as FLOSS for others to use/modify/enhance!
It is notoriously hard to prove properties of floating-point computations, including the simpler bounding properties that state safe bounds on the values taken by entities in the program. Thanks to the recent changes in SPARK 17, users can now benefit from much better provability for these programs, by combining the capabilities of different provers. For the harder cases, this requires using ghost code to state intermediate assertions proved by one of the provers, to be used by others. This work is described in an article which was accepted at VSTTE 2017 conference.
The Frama-C & SPARK Day this week was a very successful event gathering the people interested in formal program verification for C programs (with Frama-C) and for Ada programs (with SPARK). Here is a summary of what was interesting for SPARK users. We also point to the slides of the presentations.
While SPARK has been used for years in companies like Altran UK, companies without the same know-how may find it intimidating to get started on formal program verification. To help with that process, AdaCore has collaborated with Thales throughout the year 2016 to produce a 70-pages detailed guidance document for the adoption of SPARK. These guidelines are based on five levels of assurance that can be achieved on software, in increasing order of costs and benefits: Stone level (valid SPARK), Bronze level (initialization and correct data flow), Silver level (absence of run-time errors), Gold level (proof of key properties) and Platinum level (full functional correctness). These levels, and their mapping to the Development Assurance Levels (DAL) and Safety Integrity Levels (SIL) used in certification standards, were presented at the recent High Confidence Software and Systems conference.
A few weeks ago one of my colleagues shared this kickstarter project : The Barisieur. It’s an alarm clock coffee maker, promising to wake you up with a freshly brewed cup of coffee every morning. I jokingly said “just give me an espresso machine and I can do the same”. Soon after, the coffee machine is in my office. Now it is time to deliver :)
We reported in a previous post our initial experiments to create lightweight checkers for Ada source code, based on the new Libadalang technology. The two checkers we described discovered 12 issues in the codebase of the tools we develop at AdaCore. In this post, we are reporting on 6 more lightweight checkers, which have discovered 114 new issues in our codebase. This is definitely showing that these kind of checkers are worth integrating in static analysis tools, and we look forward to integrating these and more in our static analyzer CodePeer for Ada programs.
After we created lightweight checkers based on the recent Libadalang technology developed at AdaCore, a colleague gave us the challenge of creating a copy-paste detector based on Libadalang. It turned out to be both easier than anticipated, and much more efficient and effective than we could have hoped for. In the end, we hope to use this new detector to refactor the codebase of some of our tools, and we expect to integrate it in our IDEs.
This year again, the VerifyThis competition took place as part of ETAPS conferences. This is the occasion for builders and users of formal program verification platforms to use their favorite tools on common challenges. The first challenge this year was a good fit for SPARK, as it revolves around proving properties of an imperative sorting procedure. In this post, I am using this challenge to show how one can reach different levels of software assurance with SPARK.
In my previous blog article, I exposed some techniques that helped me rewrite the Crazyflie’s firmware from C into Ada and SPARK 2014, in order to improve its safety.
User friendly strings APIIn a previous post, we described the design of a new strings package, with improved performance compared to the standard Ada unbounded strings implementation. That post focused on various programming techniques used to make that package as fast as possible.
Euclid's algorithm for computing the greatest common divisor of two numbers is one of the first ones we learn in school, and also one of the first algorithms that humans devised. So it's quite appealing to try to prove it with an automatic proving toolset like SPARK. It turns out that proving it automatically is not so easy, just like understanding why it works is not so easy. In this post, I am using ghost code to prove correct implementations of the GCD, starting from a naive linear search algorithm and ending with Euclid's algorithm.
This post describes the new GNATCOLL.Strings package, and the various optimizations it performs to provide improved performance.
This post has been updated in March 2017 and was originally posted in March 2016.
Two projects by Daniel King and Martin Becker facilitate the analysis of GNATprove results by exporting the results (either from the log or from the generated JSON files) to either Excel or JSON/text.
Following the current trend, the GNATcoverage project moves to GitHub! Our new address is: https://github.com/AdaCore/gnatcoverage
While searching for motivating projects for students of the Real-Time Systems course here at Universitat Politècnica de València, we found a curious device that produces a fascinating effect. It holds a 12 cm bar from its bottom and makes it swing, like an upside-down pendulum, at a frequency of nearly 9 Hz. The free end of the bar holds a row of eight LEDs. With careful and timely switching of those LEDs, and due to visual persistence, it creates the illusion of text... floating in the air!
One of us got hooked on the promise of a credit-card-size programmable pocket game under the name of Arduboy and participated in its kickstarter in 2015. The kickstarter was successful (but late) and delivered the expected working board in mid 2016. Of course, the idea from the start was to program it in Ada , but this is an 8-bits AVR microcontroller (the ATmega32u4 by Atmel) not supported anymore by GNAT Pro. One solution would have been to rebuild our own GNAT compiler for 8-bit AVR from the GNAT FSF repository and use the AVR-Ada project. Another solution, which we explore in this blog post, is to use the SPARK-to-C compiler that we developed at AdaCore to turn our Ada code into C and then use the Arduino toolchain to compile for the Arduboy board.
GNATprove performs auto-active verification, that is, verification is done automatically, but usually requires annotations by the user to succeed. In SPARK, annotations are most often given in the form of contracts (pre and postconditions). But some language features, in particular ghost code, allow proof guidance to be much more involved. In a paper we are presenting at NASA Formal Methods symposium 2017, we describe how an imperative red black tree implementation in SPARK was verified using intensive auto-active verification.