AdaCore Blog

An Insight Into the AdaCore Ecosystem

by Yannick Moy

SPARK 2014 Rationale: Ghost Code

A common situation when proving properties about a program is that you end up writing additional code whose only purpose is to help proving the original program. If you're careful or lucky enough, the additional code you write will not impact the program being verified, and it will be removed during compilation, so that it does not inflate binary size or waste execution cycles. SPARK provides a way to get these benefits automatically, by marking the corresponding code as ghost code, using the new Ghost aspect.

#Formal Verification    #SPARK   

by Yannick Moy

Using Coq to Verify SPARK 2014 Code

In the first release of SPARK 2014, GNATprove only provided support for automatic provers, in particular Alt-Ergo. Automatic provers are very handy when it comes to perform a big numberof simple proof. But they can fail to prove valid formulas when the proof involves some advanced reasoning. As mentioned in a previous post, one check left unproved might invalidate assumptions on which are based the proofs of multiple other checks. This is a case where manual proof may be useful for SPARK 2014 users. The development version of GNATprove now supports Coq to perform manual proof.

#Formal Verification    #SPARK   

by Yannick Moy

Using SPARK to Prove AoRTE in Robot Navigation Software

Correctness of robot software is a challenge. Just proving the absence of run-time errors (AoRTE) in robot software is a challenge big enough that even NASA has not solved it. Researchers have used SPARK to do precisely that for 3 well-known robot navigation algorithms. Their results will be presented at the major robotics conference IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014) this coming September.

#Formal Verification    #SPARK    #Robotics   

by Claire Dross

External Axiomatizations: a Trip Into SPARK’s Internals

There are cases expressing all the specification of a package in SPARK is either impossible (for example if you need to link them to elements of the mathematical world, like trigonometry functions), cumbersome (especially if they require concepts that cannot easily be described using contracts, like transitivity, counting, summation...), or simply inefficient, for big and complex data structures like containers for example. In these cases, a user can provide directly a manually written Why3 translation for an Ada package using a feature named external axiomatizations. Coming up with this manual translation requires both a knowledge of the WhyML language and a minimal understanding of GNATprove's mechanisms and is therefore reserved to advanced users.

#Formal Verification    #SPARK   

by Claire Dross

Manual Proof with Ghost Code in SPARK 2014

Guiding automatic solvers by adding intermediate assertions is a commonly used technique. We can go further in this direction, by adding complete pieces of code doing nothing, generally called ghost code, to guide the automated reasoning. This is an advanced feature, for people willing to manually guide proofs. Still, it is all in SPARK 2014 and thus does not require the user to learn a new language. We explain here how we can achieve inductive proofs on a permutation function.

#Formal Verification    #SPARK   

by Yannick Moy

Use of SPARK in a Certification Context

Using SPARK or any other formal method in a certification requires that the applicant agrees with the certification authority on the verification objectives that this use of formal methods allows to reach, and how this is obtained and documented. In order to facilitate this process, the participants to the workshop on Theorem Proving in Certification have produced a draft set of guidelines, now publicly available.

#Formal Verification    #Certification   

by Florian Schanda Guest Author

SPARK 2014 Rationale: Information Flow

In a previous blog post we described how aspect Global can be used to designate the specific global variables that a subprogram has to read and write. So, by reading the specification of a subprogram that has been annotated with aspect Global we can see exactly which variables, both local and global, are read and/or written each time the subprogram is called. Based purely on the Global aspect, this pretty much summarizes the full extent of our knowledge about the flow of information in a subprogram. To be more precise, at this point, we know NOTHING about the interplay between the inputs and outputs of the subprogram. For all we know, all outputs could be randomly generated and the inputs might not contribute in the calculation of any of the outputs. To improve this situation, SPARK 2014 uses aspect Depends to capture the dependencies between a subprogram's outputs and inputs. This blog post demonstrates through some examples how aspect Depends can be used to facilitate correct flow of information through a subprogram.

#Formal Verification    #SPARK   

by Florian Schanda Guest Author

SPARK 2014 Rationale: Data Dependencies

Programs often use a few global variables. Global variables make passing common information between different parts of a program easier. By reading the specification of a subprogram we are able to see all of the parameters that the subprogram uses and, in Ada, we also get to know whether they are read, written or both. However, no information regarding the use of global variables is revealed by reading the specifications. In order to monitor and enforce which global variables a subprogram is allowed to use, SPARK 2014 has introduced the Global aspect, which I describe in this post.

#Language    #Formal Verification    #SPARK   

by Yannick Moy

GNATprove Tips and Tricks: How to Write Loop Invariants

Having already presented in previous posts why loop invariants are necessary for formal verification of programs with loops, and what loop invariants are necessary for various loops, we detail here a methodology for how users can come up with the right loop invariants for their loops. This methodology in four steps allows users to progressively add the necessary information in their loop invariants, with the tool GNATprove providing the required feedback at each step on whether the information provided is sufficient or not.

#Formal Verification    #SPARK   

by Yannick Moy

Case Study for System to Software Integrity Includes SPARK 2014

My colleague Matteo Bordin will present at the upcoming Embedded Real Time Software and Systems conference in Toulouse in February a case study showing how formal verification with SPARK can be included in a larger process to show preservation of properties from the system level down to the software level. The case study is based on the Nose Gear challenge from the Workshop on Theorem Proving in Certification.

#Formal Verification    #Certification    #SPARK