AdaCore Blog

An Insight Into the AdaCore Ecosystem

by Yannick Moy

Use of SPARK in a Certification Context

Using SPARK or any other formal method in a certification requires that the applicant agrees with the certification authority on the verification objectives that this use of formal methods allows to reach, and how this is obtained and documented. In order to facilitate this process, the participants to the workshop on Theorem Proving in Certification have produced a draft set of guidelines, now publicly available.

#Formal Verification    #Certification   

by Florian Schanda Guest Author

SPARK 2014 Rationale: Information Flow

In a previous blog post we described how aspect Global can be used to designate the specific global variables that a subprogram has to read and write. So, by reading the specification of a subprogram that has been annotated with aspect Global we can see exactly which variables, both local and global, are read and/or written each time the subprogram is called. Based purely on the Global aspect, this pretty much summarizes the full extent of our knowledge about the flow of information in a subprogram. To be more precise, at this point, we know NOTHING about the interplay between the inputs and outputs of the subprogram. For all we know, all outputs could be randomly generated and the inputs might not contribute in the calculation of any of the outputs. To improve this situation, SPARK 2014 uses aspect Depends to capture the dependencies between a subprogram's outputs and inputs. This blog post demonstrates through some examples how aspect Depends can be used to facilitate correct flow of information through a subprogram.

#Formal Verification    #SPARK   

by Florian Schanda Guest Author

SPARK 2014 Rationale: Data Dependencies

Programs often use a few global variables. Global variables make passing common information between different parts of a program easier. By reading the specification of a subprogram we are able to see all of the parameters that the subprogram uses and, in Ada, we also get to know whether they are read, written or both. However, no information regarding the use of global variables is revealed by reading the specifications. In order to monitor and enforce which global variables a subprogram is allowed to use, SPARK 2014 has introduced the Global aspect, which I describe in this post.

#Language    #Formal Verification    #SPARK   

by Yannick Moy

GNATprove Tips and Tricks: How to Write Loop Invariants

Having already presented in previous posts why loop invariants are necessary for formal verification of programs with loops, and what loop invariants are necessary for various loops, we detail here a methodology for how users can come up with the right loop invariants for their loops. This methodology in four steps allows users to progressively add the necessary information in their loop invariants, with the tool GNATprove providing the required feedback at each step on whether the information provided is sufficient or not.

#Formal Verification    #SPARK   

by Yannick Moy

Case Study for System to Software Integrity Includes SPARK 2014

My colleague Matteo Bordin will present at the upcoming Embedded Real Time Software and Systems conference in Toulouse in February a case study showing how formal verification with SPARK can be included in a larger process to show preservation of properties from the system level down to the software level. The case study is based on the Nose Gear challenge from the Workshop on Theorem Proving in Certification.

#Formal Verification    #Certification    #SPARK   

by Yannick Moy

Muen Separation Kernel Written in SPARK

The University of Applied Sciences Rapperswil in Switzerland has released last week an open-source separation kernel written in SPARK, which has been proved free from run-time errors. This project is part of the secure multilevel workstation project by Secunet, a German security company, which is using SPARK and Isabelle to create the next generation of secure workstations providing different levels of security to government employees and military personnel. I present why I think this project is worth following closely.

#Language    #Formal Verification    #SPARK   

by Yannick Moy

GNATprove Tips and Tricks: Referring to Input in Contracts

In a previous post about pre-call values, I described how the Ada language rules implemented in the compiler prevent surprises when referring to input values in the postcondition, using the Old attribute. Unfortunately, these rules also make it difficult to express some complex postconditions that may be useful when doing formal verification. In this post, I describe how contract cases allow the expression of these complex contracts, while still detecting potential problems with uses of the Old attribute.

#Language    #Formal Verification    #SPARK   

by Yannick Moy

SPARK 2014 Rationale: Global State

Global variables are a common source of programming errors: they may fail to be initialized properly, they can be modified in unexpected ways, sequences of modifications may be illegal, etc. SPARK 2014 provides a way to define abstractly the global state of a unit, so that it can be referred to in subprogram specifications. The associated toolset checks correct access to global variables in the implementation.

#Language    #Formal Verification    #SPARK   

by Yannick Moy

SPARK 2014 Rationale: Loop Variants

Loop variants are the little-known cousins of the loop invariants, used for proving termination of subprograms. Although they may not look very useful at first, they can prove effective as I show with a simple binary search example. And we came up with both an elegant syntax and a slick refinement for loop variants in SPARK 2014, compared to similar constructs in other languages.

#Language    #Formal Verification    #SPARK