An Embedded USB Device stack in Ada
A couple years ago I started to tackle what was probably my most daunting project at the time, an embedded USB Device stack written 100% in Ada.
36 entries tagged with #STM32
A couple years ago I started to tackle what was probably my most daunting project at the time, an embedded USB Device stack written 100% in Ada.
This blog entry shows how to define an abstract data type that allows tasks to block on objects of the type, waiting for resumption signals from other components, for at most a specified amount of time per object. This "timeout" capability has been available in Ada from the beginning, via select statements containing timed entry calls. But what about developers working within the Ravenscar and Jorvik tasking subsets? Select statements and timed calls are not included within either profile. This new abstraction will provide some of the functionality of timed entry calls, with an implementation consistent with the Ravenscar and Jorvik subsets.
Part of AdaCore's ongoing efforts under the HICLASS project is to demonstrate how the SPARK technology can play an integral part in the security-hardening of existing software libraries written in other non-security-oriented programming languages such as C. This blog post presents the first white paper under this work-stream, “Security-Hardening Software Libraries with Ada and SPARK”.
In this blog post I want to present a new tool that allows one to very quickly and easily start Ada programming on any ARM Cortex-M or RISC-V microcontroller.
Charles Villard, Cyril Etourneau, Thomas Delecroix, Louise Flick worked together in the ADArrose project. It won the student prize in the Make with Ada 2019/20 competition. This project was originally posted on Hackster.io here. For those interested in participating in the 2020/21 competition, registration is now open and project submissions will be accepted until Jan 31st 2021, register here.
The AFT (Autonomous FireTruck) is a prototype of an autonomous firetruck that can put out fire without risking people's lives. This project won a finalist prize in the Make with Ada 2019/20 competition.
Guillermo Perez's project won a finalist prize in the Make with Ada 2019/20 competition. This project was originally posted on Hackster.io here. For those interested in participating in the 2020/21 competition, registration is now open and project submissions will be accepted until Jan 31st 2021, register here.
Laurent Zhu's and Damien Grisonnet's project was accomplished for the EPITA Ada courses and won a finalist prize in the Make with Ada 2019/20 competition.
Hedley Rainnie's project combines 6 different SoCs all programmed in Ada performing as a LoRa network. He also showcases a BLE bridge to a LoRa server. His project came about when him and his wife were musing about how to detect and deter unwanted garden visitors. This ongoing project won a finalist prize in the 2019/20 Make with Ada competition.
John Singleton's The SmartBase makes your existing adjustable bed safer and easier to use by adding voice control and safe (and fun!) LED underbed lighting! Additionally, this project won first place prize in the 2019/20 Make with Ada competition.
As a demonstration for the use of Ada and SPARK in very small embedded targets, I created a remote-controlled (RC) car using Lego NXT Mindstorms motors and sensors but without using the Lego computer or Lego software. I used an ARM Cortex System-on-Chip board for the computer, and all the code -- the control program, the device drivers, everything -- is written in Ada. Over time, I’ve upgraded some of the code to be in SPARK. This blog post describes the hardware, the software, the SPARK upgrades, and the repositories that are used and created for this purpose.
I was quite happy to see AdaFruit release their first Feather format board including a micro-controller with plenty of Ada support, the STM32F4. I bought a board right away and implemented some support code for it.
I was looking for a topic for my master thesis in embedded systems engineering when one of my advisor proposed the idea of programming a control system for autonomous trains in Ada. Since I am fascinated by the idea of autonomous vehicles I agreed immediately without knowing Ada.
Calling all members of the Ada and SPARK community, we are pleased to announce that GNAT Community 2018 is here! adacore.com/download
This is part #2 of the SPARKZumo series of blog posts. This post covers the build system that was used to build the SPARKZumo project and how to automate the process in GPS.
There are a lot of DIY CNC projects out there (router, laser, 3D printer, egg drawing, etc.), but I never saw a DIY CNC sandblaster. So I decided to make my own.
Updated July 2018
SummaryThe Ada IoT Stack consists of an lwIp (“lightweight IP”) stack implementation written in Ada, with an associated high-level protocol to support embedded device connectivity nodes for today’s IoT world. The project was developed for the Make With Ada 2017 competition based on existing libraries and ported to embedded STM32 devices.
The first thing that struck me when I started to learn about the Ada programing language was the tasking support. In Ada, creating tasks, synchronizing them, sharing access to resources, are part of the language
This project involves the design of a software platform that provides a good basis when developing motor controllers for brushless DC motors (BLDC/PMSM). It consist of a basic but clean and readable implementation of a sensored field oriented control algorithm. Included is a logging feature that will simplify development and allows users to visualize what is happening. The project shows that Ada successfully can be used for a bare-metal project that requires fast execution.
A few weeks ago one of my colleagues shared this kickstarter project : The Barisieur. It’s an alarm clock coffee maker, promising to wake you up with a freshly brewed cup of coffee every morning. I jokingly said “just give me an espresso machine and I can do the same”. Soon after, the coffee machine is in my office. Now it is time to deliver :)
In my previous blog article, I exposed some techniques that helped me rewrite the Crazyflie’s firmware from C into Ada and SPARK 2014, in order to improve its safety.
While searching for motivating projects for students of the Real-Time Systems course here at Universitat Politècnica de València, we found a curious device that produces a fascinating effect. It holds a 12 cm bar from its bottom and makes it swing, like an upside-down pendulum, at a frequency of nearly 9 Hz. The free end of the bar holds a row of eight LEDs. With careful and timely switching of those LEDs, and due to visual persistence, it creates the illusion of text... floating in the air!
The Ada Drivers Library (ADL) is a collection of Ada device drivers and examples for ARM-based embedded targets. The library is maintained by AdaCore, with development originally (and predominantly) by AdaCore personnel but also by the Ada community at large. It is available on GitHub and is licensed for both proprietary and non-proprietary use.
There are moments in life where you find yourself with an AdaFruit thermal printer in one hand, and an OpenMV camera in the other.
Judging for the first annual Make with Ada competition has come to an end and we can now reveal the results.
One of the interesting aspects of developing software for a bare-board target is that displaying complex application-created information typically requires more than the target board can handle. Although some boards do have amazing graphics capabilities, in some cases you need to have the application on the target interact with applications on the host. This can be due to the existence of special applications that run only (or already) on the host, in particular.
I started this project more than a year ago. It was supposed to be the first Make with Ada project but it became the most challenging from both, the hardware and software side.
AdaCore continues to build reliable and secure software for embedded software development tools. Last month, we attended Embedded World 2016, one of the largest conferences of its kind in Europe, to present our embedded solutions and our expertise for safety, and mission critical applications in a variety of domains.
A few months ago, my colleague Rebecca installed a candy dispenser in our kitchen here at AdaCore. I don’t remember how exactly, but I was challenged to make it more… fun.
Embedded products are not stand alone, this allows them to have safety, mission critical and real-time requirements that they wouldn’t necessarily have otherwise. The embedded product line provides analyzable, verifiable, and certifiable software for both static and dynamic analysis tools.
A step by step tutorial to adapt the ARM runtime to new MCUs/boards.
When the Pebble Time kickstarter went through the roof, I looked at the specification and noticed the watch was running on an STM32F4, an ARM cortex-M4 CPU which is supported by GNAT. So I backed the campaign, first to be part of the cool kids and also to try some Ada hacking on the device.
I started out as an electronic musician, so one of my original motivations when I learnt programming was so that I could eventually *program* the sounds I wanted rather than just use already existing software to do it.
A few weeks ago I discovered the wonderful world of solenoid engines. The idea is simple: take a piston engine and replace explosion with electromagnetic field. In this article I will experiment a solenoid engine using a hacked hard drive and a software controller on a STM32F4 .
I was at Bruxelles on January 31st to present the components of GNAT GPL 2015 : SPARK 2014 and GNAT GPL for ARM bare-board. This is not unrelated to a previous blog entry on Tetris in SPARK on ARM Cortex M4, in particular I presented that Tetris demo (I brought some boards with me and despite the simple package, none were broken!). The slides contain technical details on the ravenscar profile (main principles), how to build a program for the stm32f4-discovery board and how to port the runtime. There are also less technical slides such as why we choose the stm32f4 board and photos of some graphical demos. As that could be useful to anyone interested in Ravenscar or in porting the runtime to other boards or other platforms, we've made the slides available here.