AdaCore Blog

An Insight Into the AdaCore Ecosystem

by Yannick Moy

SPARKSkein: From tour-de-force to run-of-the-mill Formal Verification

In 2010, Rod Chapman released an implementation in SPARK of the Skein cryptographic hash algorithm, and he proved that this implementation was free of run-time errors. That was a substantial effort with the previous version of the SPARK technology. We have recently translated the code of SPARKSkein from SPARK 2005 to SPARK 2014, and used GNATprove to prove absence of run-time errors in the translated program. The difference between the two technologies is striking. The heroic effort that Rod put in the formal verification of the initial version of SPARKSkein could now be duplicated with modest effort and modest knowledge of the technology, thanks to the much greater proof automation that the SPARK 2014 technology provides, as well as various features that lower the need to provide supporting specifications, most notably contracts on internal subprograms and loop invariants.

#Dev Projects    #Formal Verification    #SPARK   

by Anthony Leonardo Gracio
How to prevent drone crashes using SPARK

How to prevent drone crashes using SPARK

The Crazyflie is a very small quadcopter sold as an open source development platform: both electronic schematics and source code are directly available on their GitHub and its architecture is very flexible. Even if the Crazyflie flies out of the box, it has not been developed with safety in mind: in case of crash, its size, its weight and its plastic propellers won’t hurt anyone! But what if the propellers were made of carbon fiber, and shaped like razor blades to increase the drone’s performance? In theses circumstances, a bug in the flight control system could lead to dramatic events. In this post, I present the work I did to rewrite the stabilization system of the Crazyflie in SPARK 2014, and to prove that it is free of runtime errors. SPARK also helped me to discover little bugs in the original firmware, one of which directly related with overflows. Besides the Crazyflie, this work could be an inspiration for others to do the same work on larger and more safety-critical drones.

#UAVs    #crazyflie    #SPARK    #Drones   

by Yannick Moy

How Our Compiler Learnt From Our Analyzers

Program analyzers interpret the source code of a program to compute some information. Hopefully, the way they interpret the program is consistent with the way that the compiler interprets it to generate an executable, or the information computed is irrelevant, possibly misleading. For example, if the analyzer says that there are no possible run-time errors in a program, and you rely on this information to compile with dynamic checking off, it is crucial that no run-time error could occur as a result of a divergence of opinion between the analyzer and the compiler on the meaning of an instruction. We recently discovered such an inconsistency in how our compiler and analyzers dealt with floating-point exponentiation, which lead to a change in how GNAT now compile these operations.

#Compilation    #Formal Verification    #SPARK   

by Emma Adby

Verification on Ada code with Static and Dynamic Code Analysis - Webinar

One of the main challenges to get certification in Ada projects is the achievement of 100% code coverage but in most projects an amount of more than 95% structural coverage is hard to achieve. What can you do with the last 5% of code that can't be covered? DO-178C for example, provides a framework for the integration of various techniques in the development process to solve the problem. In this webinar you learn how static analysis and dynamic testing can help complete analysis for pieces of code that are not covered.

#CodePeer    #Code Coverage    #Dynamic Analysis    #Static Analysis    #DO-178    #DO-178C   

by Claire Dross

A quick glimpse at the translation of Ada integer types in GNATprove

In SPARK, as in most programming languages, there are a bunch of bounded integer types. On the other hand, Why3 only has mathematical integers and a library for bitvectors. Since bitwise operations can only be done on modular types in Ada, we currently translate arithmetic operations on signed integer types as operations on mathematical integers and arithmetic operations on modular types as operation on bitvectors. The only remaining question now is, how do we encode specific bounds of the Ada types into our Why3 translation ? In this post, I will present three different ways we tried to do this and explain which one we currently use and why.

#Formal Verification    #SPARK