AdaCore Blog

47 entries tagged with #Security

by Paul Butcher

Finding Vulnerabilities using Advanced Fuzz testing and AFLplusplus v3.0

Some of you may recall an AdaCore blog post written in 2017 by Thales engineer Lionel Matias titled "Leveraging Ada Run-Time Checks with Fuzz Testing in AFL". This insightful post took us on a journey of discovery as Lionel demonstrated how Ada programs, compiled using GNAT Pro and an adapted assembler pass can be subjected to advanced fuzz testing. In order to achieve this Lionel demonstrated how instrumentation of the generated assembly code around jump and label instructions, could be subjected to grey-box (path aware) fuzz testing (using the original AFL v2.52b as the fuzz engine). Lionel explained how applying the comprehensive spectrum of Ada runtime checks, in conjunction with Ada's strong typing and contract based programming, enhanced the capabilities of fuzz testing beyond the abilities of other languages. Ada's advanced runtime checking, for exceptions like overflows, and the scrutiny of Ada's design by contract assertions allow corner case bugs to be found whilst also utilising fuzz testing to verify functional correctness.

#Security   

by Jon Andrew

CuBit: A General-Purpose Operating System in SPARK/Ada

Last year, I started evaluating programming languages for a formally-verified operating system. I've been developing software for a while, but only recently began work in high integrity software development and formal methods. There are several operating system projects, like the SeL4 microkernel and the Muen separation kernel, that make use of formal verification. But I was interested in using a formally-verified language to write a general-purpose OS - an environment for abstracting the underlying hardware while acting as an arbiter for running the normal applications we're used to.

by Pat Rogers

From Ada to Platinum SPARK: A Case Study for Reusable Bounded Stacks

This blog entry describes the transformation of an Ada stack ADT into a completely proven SPARK implementation that relies on static verification instead of run-time enforcement of the abstraction’s semantics. We will prove that there are no reads of unassigned variables, no array indexing errors, no range errors, no numeric overflow errors, no attempts to push onto a full stack, no attempts to pop from an empty stack, that subprogram bodies implement their functional requirements, and so on. As a result, we get a maximally robust implementation of a reusable stack abstraction providing all the facilities required for production use.

#SPARK    #Ada    #Transitioning to SPARK   

by Quentin Ochem

Witnessing the Emergence of a New Ada Era

For nearly four decades the Ada language (in all versions of the standard) has been helping developers meet the most stringent reliability, safety and security requirements in the embedded market. As such, Ada has become an entrenched player in its historic A&D niche, where its technical advantages are recognized and well understood. Ada has also seen usage in other domains (such as medical and transportation) but its penetration has progressed at a somewhat slower pace. In these other markets Ada stands in particular contrast with the C language, which, although suffering from extremely well known and documented flaws, remains a strong and seldom questioned default choice. Or at least, when it’s not the choice, C is still the starting point (a gateway drug?) for alternatives such as C++ or Java, which in the end still lack the software engineering benefits that Ada embodies..

by Joffrey Huguet , Johannes Kanig

Proving a simple program doing I/O ... with SPARK

The functionality of many security-critical programs is directly related to Input/Output (I/O). This includes command-line utilities such as gzip, which might process untrusted data downloaded from the internet, but also any servers that are directly connected to the internet, such as webservers, DNS servers and so on. In this blog post we show an approach that deals with error handling and reasoning about content, and demonstrate the approach using the cat command line utility.

#Formal Verification    #SPARK   

by Boran Car

Bringing Ada To MultiZone

C is the dominant language of the embedded world, almost to the point of exclusivity. Due to its age, and its goal of being a “portable assembler”, it deliberately lacks type-safety, opening up exploit vectors. Proposed solutions are partitioning the application into smaller intercommunicating blocks, designed with the principle of least privilege in mind; and rewriting the application in a type-safe language. We believe that both approaches are complementary and want to show you how to combine separation and isolation provided by MultiZone together with iteratively rewriting parts in Ada. We will take the MultiZone SDK demo and rewrite one of the zones in Ada.

#Ada    #embedded    #Embedded Development    #Security    #multizone    #Hex-Five   

by Yannick Moy , Nicolas Setton , Ben Brosgol

A Readable Introduction to Both MISRA C and SPARK Ada

MISRA C is the most widely known coding standard restricting the use of the C programming language for critical software. For good reasons. For one, its focus is entirely on avoiding error-prone programming features of the C programming language rather than on enforcing a particular programming style. In addition, a large majority of rules it defines are checkable automatically (116 rules out of the total 159 guidelines), and many tools are available to enforce those. As a coding standard, MISRA C even goes out of its way to define a consistent sub-language of C, with its own typing rules (called the "essential type model" in MISRA C) to make up for the lack of strong typing in C.

#MISRA-C    #SPARK    #Safety    #Security   

by Quentin Ochem

Proving Memory Operations - A SPARK Journey

The promise behind the SPARK language is the ability to formally demonstrate properties in your code regardless of the input values that are supplied - as long as those values satisfy specified constraints. As such, this is quite different from static analysis tools such as our CodePeer or the typical offering available for e.g. the C language, which trade completeness for efficiency in the name of pragmatism. Indeed, the problem they’re trying to solve - finding bugs in existing applications - makes it impossible to be complete. Or, if completeness is achieved, then it is at the cost of massive amount of uncertainties (“false alarms”). SPARK takes a different approach. It requires the programmer to stay within the boundaries of a (relatively large) Ada language subset and to annotate the source code with additional information - at the benefit of being able to be complete (or sound) in the verification of certain properties, and without inundating the programmer with false alarms.

by Yannick Moy

​Amazon Relies on Formal Methods for the Security of AWS

Byron Cook, who founded and leads the Automated Reasoning Group at Amazon Web Services (AWS) Security, gave a powerful talk at the Federated Logic Conference in July about how Amazon uses formal methods for ensuring the security of parts of AWS infrastructure. In the past four years, this group of 20+ has progressively hired well-known formal methods experts to face the growing demand inside AWS to develop tools based on formal verification for reasoning about cloud security. What is unique so far is the level of investment at AWS in formal verification as a means to radically eliminate some security problems, both for them and for their customers. This is certainly an approach we're eager to support with our own investment in the SPARK technology​.

#Formal Verification    #Cloud    #Security   

by Yannick Moy

Security Agency Uses SPARK for Secure USB Key

​ANSSI, the French national security agency, has published the results of their work since 2014 on designing and implementing an open-hardware & open-source USB key that provides defense-in-depth against vulnerabilities on the USB hardware, architecture, protocol and software stack. In this project called WooKey, Ada and SPARK are key components for the security of the platform. This is a very compelling demontration of both the usability and the power of safe languages and formal verification to develop secure systems.

#SPARK    #Security    #Formal Methods   

by Yannick Moy , Roderick Chapman

How Ada and SPARK Can Increase the Security of Your Software

There is a long-standing debate about which phase in the Software Development Life Cycle causes the most bugs: is it the specification phase or the coding phase? A recent study by NIST shows that, in the software industry at large, coding bugs are causing the majority of security issues. Choosing a safer language like Ada or SPARK is a critical component for reducing these vulnerabilities that result from simple mistakes. In a new freely available booklet, we explain how these languages and the associated toolsets can be used to increase the security of software.

#Ada    #SPARK    #Security   

by Yannick Moy

Two Days Dedicated to Sound Static Analysis for Security

​AdaCore has been working with CEA, Inria and NIST to organize a two-days event dedicated to sound static analysis techniques and tools, and how they are used to increase the security of software-based systems. The program gathers top-notch experts in the field, from industry, government agencies and research institutes, around the three themes of analysis of legacy code, use in new developments and accountable software quality. Here is why it is worth attending.

#SPARK    #Frama-C    #Security    #Formal Methods    #Static Analysis   

by Yannick Moy

Secure Software Architectures Based on Genode + SPARK

​SPARK user Alexander Senier presented recently at BOB Konferenz​ in Germany their use of SPARK for building secure mobile architectures. What's nice is that they build on the guarantees that SPARK provides at software level to create a secure software architecture based on the Genode operating system framework​. They present 3 interesting architectural designs that make it possible to build a trustworthy system out of untrustworthy building blocks. Almost as exciting as Alchemy's goal of transforming lead into gold! Here is the video of that presentation.

#SPARK    #Mobile    #Security   

by Yannick Moy

Tokeneer Fully Verified with SPARK 2014

Tokeneer is a software for controlling physical access to a secure enclave by means of a fingerprint sensor. This software was created by Altran (Praxis at the time) in 2003 using the previous generation of SPARK language and tools, as part of a project commissioned by the NSA to investigate the rigorous development of critical software using formal methods. The project artefacts, including the source code, were released as open source in 2008. Tokeneer was widely recognized as a milestone in industrial formal verification. We recently transitioned this software to SPARK 2014, and it allowed us to go beyond what was possible with the previous SPARK technology. We have also shown how security vulnerabilities introduced in the code can be detected by formal verification.

#SPARK    #Formal Methods   

by Lionel Matias

Leveraging Ada Run-Time Checks with Fuzz Testing in AFL

Fuzzing is a very popular bug finding method. The concept, very simple, is to continuously inject random (garbage) data as input of a software component, and wait for it to crash. If, like me, you find writing robustness test tedious and not very efficient in finding bugs, you might want to try fuzzing your Ada code.Here's a recipe to fuzz-test your Ada code, using American Fuzzy Lop and all the runtime checks your favorite Ada compiler can provide.Let's see (quickly) how AFL works, then jump right into fuzzing 3 open-source Ada libraries: ZipAda, AdaYaml, and GNATCOLL.JSON.

#Testing    #Ada    #VerificationTools   

by Yannick Moy

Rod Chapman on Software Security

Rod Chapman gave an impactful presentation at Bristech conference last year. His subject: programming Satan's computer! His way of pointing out how difficult it is to produce secure software. Of course, it would not be Rod Chapman if he did not have also a few hints at how they have done it at Altran UK over the years. And SPARK is central to this solution, although it does not get mentioned explicitly in the talk! (although Rod lifts the cover in answering a question at the end)

#Security    #SPARK   

by Yannick Moy

New Year's Resolution for 2017: Use SPARK, Say Goodbye to Bugs

​NIST has recently published a report called "Dramatically Reducing Software Vulnerabilities"​ in which they single out five approaches which have the potential for creating software with 100 times fewer vulnerabilities than we do today. One of these approaches is formal methods. Among formal methods, the report highlights strong suits of SPARK, and cites SPARK projects as example of mature uses of formal methods. NIST is not the only ones to support the use of SPARK. Editor Bill Wong from Electronic Design has included SPARK in his "2016 Gifts for the Techie". So if your new year's resolutions include software without bugs, have a look at SPARK in 2017.

#VerificationTools    #Formal Methods    #SPARK   

by Yannick Moy

Verified, Trustworthy Code with SPARK and Frama-C

Last week, a few of us at AdaCore have attended a one-day workshop organized at Thales Research and Technologies, around the topic of "Verified, trustworthy code - formal verification of software". Attendees from many different branches of Thales (avionics, railway, security, networks) were given an overview of the state-of-practice in formal verification of software, focused on two technologies: the SPARK technology that we develop at AdaCore for programs in Ada, and the Frama-C technology developed at CEA research labs for programs in C. The most interesting part of the day was the feedback given by three operational teams who have experimented during a few months with either SPARK (two teams) or Frama-C (one team). The lessons learned by first-time adopters of such technologies are quite valuable.

#SPARK    #Formal Methods   

by Yannick Moy

A Building Code for Building Code

In a recent article in Communications of the ACM, Carl Landwehr, a renowned scientific expert on security, defends the view that the software engineering community is doing overall a poor job at securing our global information system and that this is mostly avoidable by putting what we know works to work, to the point that most vulnerabilities could be completely avoided by design if we cared enough. Shocking! Or so it should appear.

#Ada    #SPARK    #Static Analysis    #Security   

by Yannick Moy

SPARK 2014 Rationale: Ghost Code

A common situation when proving properties about a program is that you end up writing additional code whose only purpose is to help proving the original program. If you're careful or lucky enough, the additional code you write will not impact the program being verified, and it will be removed during compilation, so that it does not inflate binary size or waste execution cycles. SPARK provides a way to get these benefits automatically, by marking the corresponding code as ghost code, using the new Ghost aspect.

#Formal Verification    #SPARK   

by Yannick Moy

Use of SPARK in a Certification Context

Using SPARK or any other formal method in a certification requires that the applicant agrees with the certification authority on the verification objectives that this use of formal methods allows to reach, and how this is obtained and documented. In order to facilitate this process, the participants to the workshop on Theorem Proving in Certification have produced a draft set of guidelines, now publicly available.

#Formal Verification    #Certification   

by Yannick Moy

Muen Separation Kernel Written in SPARK

The University of Applied Sciences Rapperswil in Switzerland has released last week an open-source separation kernel written in SPARK, which has been proved free from run-time errors. This project is part of the secure multilevel workstation project by Secunet, a German security company, which is using SPARK and Isabelle to create the next generation of secure workstations providing different levels of security to government employees and military personnel. I present why I think this project is worth following closely.

#Language    #Formal Verification    #SPARK