AdaCore Blog

49 entries tagged with #drivers

by Fabien Chouteau

Embedded Ada/SPARK, There's a Shortcut

For years in this blog my colleagues and I have published examples, demos, and how-to’s on Ada/SPARK embedded (as in bare-metal) development. Most of the time, if not always, we focused on one way of doing things: to start from scratch and write everything in Ada/SPARK, from the low level drivers to the application. While this way of doing Ada/SPARK embedded will yield the best results in terms of software quality, it might not be the most efficient in all cases. In this blog post I want to present an alternative method to introduce Ada/SPARK into your embedded development projects.

#Embedded   

by Fabien Chouteau

Ada/SPARK Crate Of The Year 2021 Winners Announced!

In June of 2021 we announced the launch of a new programming competition called Ada/SPARK Crate Of The Year Awards. We believe the Alire source package manager is a game changer for Ada/SPARK, so we want to use this competition to reward the people contributing to the ecosystem. Today we are pleased to announce the results. But first, we want to congratulate all the participants, and the Alire community at large, for reaching 200 crates in the ecosystem in January of this year. We truly believe in a bright future for the Ada/SPARK open-source ecosystem with Alire at the forefront. Reaching this milestone is a great sign, inside and outside the Ada/SPARK community, of the evolution and the energy of the ecosystem.

by Pat Rogers

Task Suspension with a Timeout in Ravenscar/Jorvik

This blog entry shows how to define an abstract data type that allows tasks to block on objects of the type, waiting for resumption signals from other components, for at most a specified amount of time per object. This "timeout" capability has been available in Ada from the beginning, via select statements containing timed entry calls. But what about developers working within the Ravenscar and Jorvik tasking subsets? Select statements and timed calls are not included within either profile. This new abstraction will provide some of the functionality of timed entry calls, with an implementation consistent with the Ravenscar and Jorvik subsets.

#Ada    #Tasking    #Ravenscar    #Jorvik    #Timeouts    #Timing_Event    #Suspension_Object   

by Roderick Chapman

SPARKNaCl with GNAT and SPARK Community 2021: Port, Proof and Performance

This post continues our adventures with SPARKNaCl - our verified SPARK version of the TweetNaCl cryptographic library. This time, we'll be looking at yet more performance improvement via proof-driven "operator narrowing", porting the library to GNAT Community 2021, and the effect that has on proof and performance of the code.

#SPARK     #Cryptography    #Formal Verification    #Code generation    #RISC-V    #Security   

by Jon Andrew

CuBit: A General-Purpose Operating System in SPARK/Ada

Last year, I started evaluating programming languages for a formally-verified operating system. I've been developing software for a while, but only recently began work in high integrity software development and formal methods. There are several operating system projects, like the SeL4 microkernel and the Muen separation kernel, that make use of formal verification. But I was interested in using a formally-verified language to write a general-purpose OS - an environment for abstracting the underlying hardware while acting as an arbiter for running the normal applications we're used to.

by Pat Rogers

Making an RC Car with Ada and SPARK

As a demonstration for the use of Ada and SPARK in very small embedded targets, I created a remote-controlled (RC) car using Lego NXT Mindstorms motors and sensors but without using the Lego computer or Lego software. I used an ARM Cortex System-on-Chip board for the computer, and all the code -- the control program, the device drivers, everything -- is written in Ada. Over time, I’ve upgraded some of the code to be in SPARK. This blog post describes the hardware, the software, the SPARK upgrades, and the repositories that are used and created for this purpose.

#Ada    #SPARK    #Robotics   

by Boran Car

Bringing Ada To MultiZone

C is the dominant language of the embedded world, almost to the point of exclusivity. Due to its age, and its goal of being a “portable assembler”, it deliberately lacks type-safety, opening up exploit vectors. Proposed solutions are partitioning the application into smaller intercommunicating blocks, designed with the principle of least privilege in mind; and rewriting the application in a type-safe language. We believe that both approaches are complementary and want to show you how to combine separation and isolation provided by MultiZone together with iteratively rewriting parts in Ada. We will take the MultiZone SDK demo and rewrite one of the zones in Ada.

#Ada    #Embedded    #Embedded Development    #Security    #multizone    #Hex-Five   

by J. German Rivera

Make with Ada 2017- A "Swiss Army Knife" Watch

SummaryThe Hexiwear is an IoT wearable development board that has two NXP Kinetis microcontrollers. One is a K64F (Cortex-M4 core) for running the main embedded application software. The other one is a KW40 (Cortex M0+ core) for running a wireless connectivity stack (e.g., Bluetooth BLE or Thread). The Hexiwear board also has a rich set of peripherals, including OLED display, accelerometer, magnetometer, gryroscope, pressure sensor, temperature sensor and heart-rate sensor. This blog article describes the development of a "Swiss Army Knife" watch on the Hexiwear platform. It is a bare-metal embedded application developed 100% in Ada 2012, from the lowest level device drivers all the way up to the application-specific code, for the Hexiwear's K64F microcontroller. I developed Ada drivers for Hexiwear-specific peripherals from scratch, as they were not supported by AdaCore's Ada drivers library. Also, since I wanted to use the GNAT GPL 2017 Ada compiler but the GNAT GPL distribution did not include a port of the Ada Runtime for the Hexiwear board, I also had to port the GNAT GPL 2017 Ada runtime to the Hexiwear. All this application-independent code can be leveraged by anyone interested in developing Ada applications for the Hexiwear wearable device.

by Jonas Attertun

Make with Ada 2017: Brushless DC Motor Controller

This project involves the design of a software platform that provides a good basis when developing motor controllers for brushless DC motors (BLDC/PMSM). It consist of a basic but clean and readable implementation of a sensored field oriented control algorithm. Included is a logging feature that will simplify development and allows users to visualize what is happening. The project shows that Ada successfully can be used for a bare-metal project that requires fast execution.

#Makers    #MakewithAda    #STM32    #Embedded   

by Jorge Real

Writing on Air

While searching for motivating projects for students of the Real-Time Systems course here at Universitat Politècnica de València, we found a curious device that produces a fascinating effect. It holds a 12 cm bar from its bottom and makes it swing, like an upside-down pendulum, at a frequency of nearly 9 Hz. The free end of the bar holds a row of eight LEDs. With careful and timely switching of those LEDs, and due to visual persistence, it creates the illusion of text... floating in the air!

#STM32    #Ravenscar    #Ada    #Makers    #Embedded Development   

by Pat Rogers

Driving a 3D Lunar Lander Model with ARM and Ada

One of the interesting aspects of developing software for a bare-board target is that displaying complex application-created information typically requires more than the target board can handle. Although some boards do have amazing graphics capabilities, in some cases you need to have the application on the target interact with applications on the host. This can be due to the existence of special applications that run only (or already) on the host, in particular.

#Bareboard    #Embedded Development    #STM32    #Ada   

by Anthony Leonardo Gracio

How to prevent drone crashes using SPARK

The Crazyflie is a very small quadcopter sold as an open source development platform: both electronic schematics and source code are directly available on their GitHub and its architecture is very flexible. Even if the Crazyflie flies out of the box, it has not been developed with safety in mind: in case of crash, its size, its weight and its plastic propellers won’t hurt anyone! But what if the propellers were made of carbon fiber, and shaped like razor blades to increase the drone’s performance? In theses circumstances, a bug in the flight control system could lead to dramatic events. In this post, I present the work I did to rewrite the stabilization system of the Crazyflie in SPARK 2014, and to prove that it is free of runtime errors. SPARK also helped me to discover little bugs in the original firmware, one of which directly related with overflows. Besides the Crazyflie, this work could be an inspiration for others to do the same work on larger and more safety-critical drones.

#UAVs    #crazyflie    #SPARK    #Drones   

by Yannick Moy

Muen Separation Kernel Written in SPARK

The University of Applied Sciences Rapperswil in Switzerland has released last week an open-source separation kernel written in SPARK, which has been proved free from run-time errors. This project is part of the secure multilevel workstation project by Secunet, a German security company, which is using SPARK and Isabelle to create the next generation of secure workstations providing different levels of security to government employees and military personnel. I present why I think this project is worth following closely.

#Language    #Formal Verification    #SPARK