by Paul Butcher

23 entries tagged with #UK
Part of AdaCore's ongoing efforts under the HICLASS project is to demonstrate how the SPARK technology can play an integral part in the security-hardening of existing software libraries written in other non-security-oriented programming languages such as C. This blog post presents the first white paper under this work-stream, “Security-Hardening Software Libraries with Ada and SPARK”.
Some of you may recall an AdaCore blog post written in 2017 by Thales engineer Lionel Matias titled "Leveraging Ada Run-Time Checks with Fuzz Testing in AFL". This insightful post took us on a journey of discovery as Lionel demonstrated how Ada programs, compiled using GNAT Pro and an adapted assembler pass can be subjected to advanced fuzz testing. In order to achieve this Lionel demonstrated how instrumentation of the generated assembly code around jump and label instructions, could be subjected to grey-box (path aware) fuzz testing (using the original AFL v2.52b as the fuzz engine). Lionel explained how applying the comprehensive spectrum of Ada runtime checks, in conjunction with Ada's strong typing and contract based programming, enhanced the capabilities of fuzz testing beyond the abilities of other languages. Ada's advanced runtime checking, for exceptions like overflows, and the scrutiny of Ada's design by contract assertions allow corner case bugs to be found whilst also utilising fuzz testing to verify functional correctness.
Blaine Osepchuk's project won a finalist prize in the Make with Ada 2019/20 competition. This project was originally posted on Hackster.io here. For those interested in participating in the 2020/21 competition, registration is now open and project submissions will be accepted until Jan 31st 2021, register here.
Welcome to the Ada for micro:bit series where we look at simple examples to learn how to program the BBC micro:bit with Ada.
For nearly four decades the Ada language (in all versions of the standard) has been helping developers meet the most stringent reliability, safety and security requirements in the embedded market. As such, Ada has become an entrenched player in its historic A&D niche, where its technical advantages are recognized and well understood. Ada has also seen usage in other domains (such as medical and transportation) but its penetration has progressed at a somewhat slower pace. In these other markets Ada stands in particular contrast with the C language, which, although suffering from extremely well known and documented flaws, remains a strong and seldom questioned default choice. Or at least, when it’s not the choice, C is still the starting point (a gateway drug?) for alternatives such as C++ or Java, which in the end still lack the software engineering benefits that Ada embodies..
What's changed?In 2019 AdaCore created a UK business unit and embarked on a new and collaborative venture researching and developing advanced UK aerospace systems. This blog introduces the reader to ‘HICLASS’, describes our involvement and explains how participation in this project is aligned with AdaCore’s core values.
We are happy to announce that, AdaCore, alongside Altran and Jaguar Land Rover will be major sponsors of the fifth edition of the renowned High Integrity Software Conference on the 6th November in Bristol!
Calling all members of the Ada and SPARK community, we are pleased to announce that GNAT Community 2018 is here! adacore.com/download
AdaCore provides several tools with certification and qualification capabilities, for the rail and avionics industry. Quentin Ochem’s presentation on “Certification and Qualification” at the 2015 AdaCore Tech Days in Boston, Massachusetts provided more information about these two standards, namely DO-178C and EN:50128:2011.
The three of us attended the Ada Lovelace Symposium in Oxford (UK). The two days were one fantastic discovery after another about the life, achievements and legacy of Ada Lovelace, the programming pioneer who lent her name to the Ada language.
One of the main challenges to get certification in Ada projects is the achievement of 100% code coverage but in most projects an amount of more than 95% structural coverage is hard to achieve. What can you do with the last 5% of code that can't be covered? DO-178C for example, provides a framework for the integration of various techniques in the development process to solve the problem. In this webinar you learn how static analysis and dynamic testing can help complete analysis for pieces of code that are not covered.
I recently joined AdaCore as a Technical Account Manager with an initial focus on the UK and Scandinavian regions, but for the last 12 months I've been busy working on the AdaCore University. The most recent addition to which is a course on Mixed Language Programming with Ada, and it includes lectures on the integration of Ada with C, C++ and Java. The course covers some advanced topics like mixed language object orientation, techniques for using Ada strong typing to combat known issue with C pointers and the pitfalls that are encountered when mixing native Ada code with Java at runtime. This course clearly demonstrates that Ada has strong support for integration with C, C++ and Java and it proves there are no technical barriers to its adoption in modern mixed language software systems.
20 Years of AdaCore: Company as Committed as Ever on Safety-Critical Software Solutions