AdaCore Blog

53 entries tagged with #Community

by Fabien Chouteau , Emma Adby

AdaCore Code of Conduct

Starting today, AdaCore has put in place a Code of Conduct (CoC) to ensure a positive environment for everyone willing and wanting to interact with us. With the development of this blog, our twitter accounts, and our GitHub corporate account, there is more and more communication between AdaCore and a number of communities. In this Code of Conduct we want to explain how we are going to moderate the AdaCore-maintained community spaces with the goal of maintaining a welcoming, friendly environment.

by Claire Dross

Relaxing the Data Initialization Policy of SPARK

SPARK always being under development, new language features make it in every release of the tool, be they previously unsupported Ada features (like access types) or SPARK specific developments. However, new features generally take a while to make it into actual user code. The feature I am going to present here is in my experience an exception, as it was used both internally and by external users before it made it into any actual release. It was designed to enhance the verification of data initialization, whose limitations have been a long standing issue in SPARK.

#Formal Verification    #SPARK   

by Jon Andrew

CuBit: A General-Purpose Operating System in SPARK/Ada

Last year, I started evaluating programming languages for a formally-verified operating system. I've been developing software for a while, but only recently began work in high integrity software development and formal methods. There are several operating system projects, like the SeL4 microkernel and the Muen separation kernel, that make use of formal verification. But I was interested in using a formally-verified language to write a general-purpose OS - an environment for abstracting the underlying hardware while acting as an arbiter for running the normal applications we're used to.

by Pat Rogers

Making an RC Car with Ada and SPARK

As a demonstration for the use of Ada and SPARK in very small embedded targets, I created a remote-controlled (RC) car using Lego NXT Mindstorms motors and sensors but without using the Lego computer or Lego software. I used an ARM Cortex System-on-Chip board for the computer, and all the code -- the control program, the device drivers, everything -- is written in Ada. Over time, I’ve upgraded some of the code to be in SPARK. This blog post describes the hardware, the software, the SPARK upgrades, and the repositories that are used and created for this purpose.

#Ada    #SPARK    #Robotics   

by Quentin Ochem

Witnessing the Emergence of a New Ada Era

For nearly four decades the Ada language (in all versions of the standard) has been helping developers meet the most stringent reliability, safety and security requirements in the embedded market. As such, Ada has become an entrenched player in its historic A&D niche, where its technical advantages are recognized and well understood. Ada has also seen usage in other domains (such as medical and transportation) but its penetration has progressed at a somewhat slower pace. In these other markets Ada stands in particular contrast with the C language, which, although suffering from extremely well known and documented flaws, remains a strong and seldom questioned default choice. Or at least, when it’s not the choice, C is still the starting point (a gateway drug?) for alternatives such as C++ or Java, which in the end still lack the software engineering benefits that Ada embodies..

by Joffrey Huguet , Johannes Kanig

Proving a simple program doing I/O ... with SPARK

The functionality of many security-critical programs is directly related to Input/Output (I/O). This includes command-line utilities such as gzip, which might process untrusted data downloaded from the internet, but also any servers that are directly connected to the internet, such as webservers, DNS servers and so on. In this blog post we show an approach that deals with error handling and reasoning about content, and demonstrate the approach using the cat command line utility.

#Formal Verification    #SPARK   

by Boran Car

Bringing Ada To MultiZone

C is the dominant language of the embedded world, almost to the point of exclusivity. Due to its age, and its goal of being a “portable assembler”, it deliberately lacks type-safety, opening up exploit vectors. Proposed solutions are partitioning the application into smaller intercommunicating blocks, designed with the principle of least privilege in mind; and rewriting the application in a type-safe language. We believe that both approaches are complementary and want to show you how to combine separation and isolation provided by MultiZone together with iteratively rewriting parts in Ada. We will take the MultiZone SDK demo and rewrite one of the zones in Ada.

#Ada    #embedded    #Embedded Development    #Security    #multizone    #Hex-Five   

by Allan Ascanius , Per Dalgas Jakobsen

Winning DTU RoboCup with Ada and SPARK

The Danish Technical University has a yearly RoboCup where autonomous vehicles solve a number of challenges. We participated with RoadRunner, a 3D printed robot with wheel suspension, based on the BeagleBone Blue ARM-based board and the Pixy 1 camera with custom firmware enabling real-time line detection. Code is written in Ada and formally proved correct with SPARK at Silver level.

#Robotics    #Ada    #SPARK   

by Rob Tice

The Adaroombot Project

The Adaroombot project consists of an iRobot CreateⓇ 2 and Ada running on a Raspberry Pi with a Linux OS. This is a great Intro-to-Ada project as it focuses on a control algorithm and a simple serial communications protocol. The iRobot CreateⓇ 2 platform was originally design for STEM education and has great documentation and support - making it very easy to create a control application using Ada. This blog looks at the creation of the project and some cool features of Ada that were learned along the way.

#Raspberry Pi    #ARM    #Linux    #Ada    #Roomba   

by Yannick Moy

(Many) More Low Hanging Bugs

We reported in a previous post our initial experiments to create lightweight checkers for Ada source code, based on the new Libadalang technology. The two checkers we described discovered 12 issues in the codebase of the tools we develop at AdaCore. In this post, we are reporting on 6 more lightweight checkers, which have discovered 114 new issues in our codebase. This is definitely showing that these kind of checkers are worth integrating in static analysis tools, and we look forward to integrating these and more in our static analyzer CodePeer for Ada programs.

#Static Analysis    #Libadalang   

by Yannick Moy , Nicolas Roche

A Usable Copy-Paste Detector in A Few Lines of Python

After we created lightweight checkers based on the recent Libadalang technology developed at AdaCore, a colleague gave us the challenge of creating a copy-paste detector based on Libadalang. It turned out to be both easier than anticipated, and much more efficient and effective than we could have hoped for. In the end, we hope to use this new detector to refactor the codebase of some of our tools, and we expect to integrate it in our IDEs.

#Libadalang    #Static Analysis    #refactoring   

by Raphaël Amiard , Yannick Moy , Pierre-Marie de Rodat

Going After the Low Hanging Bug

At AdaCore, we have a strong expertise in deep static analysis tools (CodePeer and SPARK), and we have been relying on the compiler GNAT and our coding standard checker GNATcheck to deal with more syntactic or weakly-semantic checks. The recent Libadalang technology, developed at AdaCore, provided us with an ideal basis to develop specialized light-weight static analyzers. As an experiment, we implemented two simple checkers using the Python binding of Libadalang. The results on our own codebase were eye-opening: we found a dozen bugs in the codebases of the tools we develop at AdaCore (including the compiler and static analyzers).

#Static Analysis   

by Yannick Moy

New Year's Resolution for 2017: Use SPARK, Say Goodbye to Bugs

​NIST has recently published a report called "Dramatically Reducing Software Vulnerabilities"​ in which they single out five approaches which have the potential for creating software with 100 times fewer vulnerabilities than we do today. One of these approaches is formal methods. Among formal methods, the report highlights strong suits of SPARK, and cites SPARK projects as example of mature uses of formal methods. NIST is not the only ones to support the use of SPARK. Editor Bill Wong from Electronic Design has included SPARK in his "2016 Gifts for the Techie". So if your new year's resolutions include software without bugs, have a look at SPARK in 2017.

#VerificationTools    #Formal Methods    #SPARK   

by Anthony Leonardo Gracio

How to prevent drone crashes using SPARK

The Crazyflie is a very small quadcopter sold as an open source development platform: both electronic schematics and source code are directly available on their GitHub and its architecture is very flexible. Even if the Crazyflie flies out of the box, it has not been developed with safety in mind: in case of crash, its size, its weight and its plastic propellers won’t hurt anyone! But what if the propellers were made of carbon fiber, and shaped like razor blades to increase the drone’s performance? In theses circumstances, a bug in the flight control system could lead to dramatic events. In this post, I present the work I did to rewrite the stabilization system of the Crazyflie in SPARK 2014, and to prove that it is free of runtime errors. SPARK also helped me to discover little bugs in the original firmware, one of which directly related with overflows. Besides the Crazyflie, this work could be an inspiration for others to do the same work on larger and more safety-critical drones.

#UAVs    #crazyflie    #SPARK    #Drones   

by Yannick Moy

A Building Code for Building Code

In a recent article in Communications of the ACM, Carl Landwehr, a renowned scientific expert on security, defends the view that the software engineering community is doing overall a poor job at securing our global information system and that this is mostly avoidable by putting what we know works to work, to the point that most vulnerabilities could be completely avoided by design if we cared enough. Shocking! Or so it should appear.

#Ada    #SPARK    #Static Analysis    #Security