72 entries tagged with #Safety
by Fabien Chouteau
The End of Binary Protocol Parser Vulnerabilities
This week we announced a new tool called RecordFlux. The goal of RecordFlux is to address one of the most critical parts of the software stack in terms of security, binary protocol parsers/serializers.From a protocol specification written in the RecordFlux Domain Specific Language (DSL), the tool can generate provable SPARK code. This means memory safety (no buffer overruns), absence of integer overflow errors, and even proof of functional properties. In this blog post I will try to explain how this is a game changer for cybersecurity.by Fabien Chouteau
GNAT Pro 21.6 for LYNX MOSA.ic for Avionics (MfA)
AdaCore has partnered closely with Lynx to deliver Ada language support alongside its LYNX MOSA.ic software framework that comprises a real-time operating system (LynxOS-178), Linux and hypervisor (LynxSecure) technology.
by Paul Butcher
Automated Assurance through Differential Fuzzing
This blog describes the concept and benefits of differential fuzz testing. In addition, the post describes setting up, executing and analyzing the results of a differential fuzzing campaign for the Libkeccak and XKCP cryptographic libraries.by Fabien Chouteau
AdaCore joins the Rust foundation
Last year we announced our strategic partnership with Ferrous Systems, a technology company specializing in the Rust programming language. Today we are announcing a new step in our involvement with the Rust ecosystem and communityby Johannes Kliemann
Adding Ada to Rust
While implementing application logic in Ada or SPARK is an improvement over a pure C project, its weakest link is still the C code in the SDK. On the other hand, there are many libraries, board support packages, and SDKs written in Rust, easily usable with Cargo. So instead of building the Ada application on top of a C base, one could use a Rust base instead to combine the large catalog of ready-to-use software with Rust's safety features, providing a much more solid base for an Ada project.by Yannick Moy
When Formal Verification with SPARK is the Strongest Link
Security is only as strong as its strongest link. That's important to keep in mind for software security, with its long chain of links, from design to development to deployment. Last year, members of NVIDIA's Offensive Security Research team (aka "red team") presented at DEF CON 29 their results on the evaluation of the security of a firmware written in SPARK and running on RISC-V. The ended up not finding vulnerabilities in the code, but in the RISC-V ISA instead. This year, the same team presented at DEF CON 30 a retrospective on the security evaluation of 17 high-impact projects since 2020. TL;DR: using SPARK makes a big difference for security, compared to using C/C++.by Paul Butcher
Fuzzing Out Bugs in Safety-Critical Embedded Software
Fuzzing Out Bugs in Safety-Critical Embedded Software: Paul Butcher from AdaCore talks to Brandon Lewis from Embedded Toolboxby Fabien Chouteau

Embedded Ada/SPARK, There's a Shortcut
For years in this blog my colleagues and I have published examples, demos, and how-to’s on Ada/SPARK embedded (as in bare-metal) development. Most of the time, if not always, we focused on one way of doing things: to start from scratch and write everything in Ada/SPARK, from the low level drivers to the application. While this way of doing Ada/SPARK embedded will yield the best results in terms of software quality, it might not be the most efficient in all cases. In this blog post I want to present an alternative method to introduce Ada/SPARK into your embedded development projects.by Paul Butcher
Join us at the High Integrity Software (HIS) Conference 2022!
After two years of virtual events, we are very happy to report that the High Integrity Software Conference (HIS) will be making a physical comeback on Tuesday 11th October 2022 at the Bristol Marriott Hotel City Centre, Bristol, UK. Since 2014, AdaCore has been co-organising the event with Capgemini Engineering (previously known as Altran Technologies, SA). The success and growth of the conference have ensured it remains a regular fixture for returning delegates, and the exciting lineup for this year's event will ensure HIS 2022 is no exception!
by Quentin Ochem
Announcing Publication of the Draft Ferrocene Language Specification
We are pleased to announce the publication of the initial draft of the Ferrocene Language Specification (FLS) - a qualification-oriented document that details the Rust language as it specifically relates to Ferrocene.by Claire Dross
Handling Aliasing through Pointers in SPARK
As I explained in a blog post a couple of years ago, pointers are subjected to a strict ownership policy in SPARK. It prevents aliasing and allows for an efficient formal verification model. Of course, it comes at the cost of restrictions which might not be applicable to all usage. In particular, while ownership makes it possible to represent certain recursive data-structures, those involving cycles or sharing are de-facto forbidden. This is a choice, and not every proof tool did the same. For example, the WP plug-in of Frama-C supports pointers with arbitrary aliasing. If some information about the separation of memory cells is necessary to verify a program, then the user shall give the annotation explicitly. I have investigated modeling pointers with aliasing in SPARK as indices in a big memory array. I will present the results of my experiments in this blog post. We will see that, while such a representation is indeed possible modulo some hiding in SPARK, it can quickly become rather heavy in practice.
by Manuel Hatzl
SPARK Crate of the Year: Unbounded containers in SPARK
Manuel Hatzl is the winner of the 2021 SPARK Crate of the year! In this blog post he shares his experience using Ada/SPARK and how he created the spark_unbound libraryby Quentin Ochem , Florian Gilcher
AdaCore and Ferrous Systems Joining Forces to Support Rust
For over 25 years, AdaCore has been committed to supporting the needs of safety- and mission-critical industries. This started with an emphasis on the Ada programming language and its toolchain, and over the years has been extended to many other technologies. AdaCore’s product offerings today include support for the Ada language and its formally verifiable SPARK subset, C and C++, and Simulink and Stateflow models. We have accomplished this while addressing the requirements of various safety standards such as DO-178B/C, EN 50128, ECSS-E-ST-40C / ECSS-Q-ST-80C, IEC 61508 and ISO 26262.
by Yannick Moy
SPARKNaCl - Two Years of Optimizing Crypto Code in SPARK (and counting)
SPARKNaCl is a SPARK version of the TweetNaCl cryptographic library, developed by formal methods and security expert Rod Chapman. For two years now, Rod has been developing and optimizing this open-source cryptographic library while preserving the automatic type-safety proof across code changes and tool updates. He has recently given a talk about this experience that I highly recommend.
by Paul Butcher

Fuzz Testing in International Aerospace Guidelines
Through the HICLASS UK research group, AdaCore has been developing security-focused software development tools that are aligned with the objectives stated within the avionics security standards. In addition, they have been developing further guidelines that describe how vulnerability identification and security assurance activities can be described within a Plan for Security Aspects of Certification.by Yannick Moy
When the RISC-V ISA is the Weakest Link
NVIDIA has been using SPARK for some time now to develop safety- and security-critical firmware applications. At the recent DEF CON 29, hackers Zabrocki and Matrosov presented how they went about attacking NVIDIA firmware written in SPARK but ended up attacking the RISC-V ISA instead!Zabrocki starts by explaining the context for their red teaming exercise at NVIDIA, followed by a description of SPARK and their evaluation of the language from a security attack perspective. He shows how they used an extension of Ghidra to decompile the binary code generated by GNAT and describes the vulnerability they identified in the RISC-V ISA thanks to that decompilation. Matrosov goes on to explain how they glitched the NVIDIA chip to exploit this vulnerability. Finally, Zabrocki talks about projects used to harden RISC-V platforms.
by Kyriakos Georgiou
Security-Hardening Software Libraries with Ada and SPARK
Part of AdaCore's ongoing efforts under the HICLASS project is to demonstrate how the SPARK technology can play an integral part in the security-hardening of existing software libraries written in other non-security-oriented programming languages such as C. This blog post presents the first white paper under this work-stream, “Security-Hardening Software Libraries with Ada and SPARK”.
by Arnaud Charlet
Going beyond Ada 2022
As we've seen previously in Ada 2022 support in GNAT, the support for Ada 2022 is now mostly there for everyone to take advantage of. We're now crossing fingers for this new revision to be officially stamped by ISO in 2022.
by Pat Rogers
An Introduction to Jorvik, the New Tasking Profile in Ada 2022
The Ada 2022 draft defines a new tasking profile named Jorvik (pronounced “Yourvick”), based directly on the standard Ravenscar profile. Jorvik relaxes certain restrictions in order to increase expressive power for real-time/embedded Ada and SPARK applications. We will explore the details in this blog entry.by Roderick Chapman
Performance analysis and tuning of SPARKNaCl
This blog goes into the details of both measuring and improving the runtime performance of SPARKNaCl on a real "bare metal" embedded target, and comparing results with those for the original "TweetNaCl" C implementation.by Fabien Chouteau
AdaCore at FOSDEM 2021
Like previous years, AdaCore will participate in FOSDEM. This time the event will be online only, but this won’t prevent us from celebrating Open Source software. AdaCore engineers will give two talks in the Safety and Open Source devroom, a topic at the heart of AdaCore since its inception.by Paul Butcher
Finding Vulnerabilities using Advanced Fuzz testing and AFLplusplus v3.0
Some of you may recall an AdaCore blog post written in 2017 by Thales engineer Lionel Matias titled "Leveraging Ada Run-Time Checks with Fuzz Testing in AFL". This insightful post took us on a journey of discovery as Lionel demonstrated how Ada programs, compiled using GNAT Pro and an adapted assembler pass can be subjected to advanced fuzz testing. In order to achieve this Lionel demonstrated how instrumentation of the generated assembly code around jump and label instructions, could be subjected to grey-box (path aware) fuzz testing (using the original AFL v2.52b as the fuzz engine). Lionel explained how applying the comprehensive spectrum of Ada runtime checks, in conjunction with Ada's strong typing and contract based programming, enhanced the capabilities of fuzz testing beyond the abilities of other languages. Ada's advanced runtime checking, for exceptions like overflows, and the scrutiny of Ada's design by contract assertions allow corner case bugs to be found whilst also utilising fuzz testing to verify functional correctness.
by Juliana Silva

Make With Ada 2020: High Integrity Sumobot
Blaine Osepchuk's project won a finalist prize in the Make with Ada 2019/20 competition. This project was originally posted on Hackster.io here. For those interested in participating in the 2020/21 competition, registration is now open and project submissions will be accepted until Jan 31st 2021, register here.
by Jessie Glockner , Ben Brosgol
The FACE™ open systems strategy gaining traction in the avionics industry
The FACE™ approach is a government-industry initiative for reducing defense system life cycle costs through portable and reusable software components. It consists of a technical approach — a software standard based on well-defined common interfaces — and a business strategy for encouraging the development and deployment of FACE conformant products.by Emma Adby

Make with Ada 2020: Disaster Management with Smart Circuit Breaker
Shahariar's project ensures safety against electrical fire or shock during an earthquake, flood, gas leakage or fire breakout by disconnecting the mains with a smart circuit breaker. Additionally, this project won a finalist prize in the 2019/20 Make with Ada competition.by Emma Adby

Make with Ada 2020: The SmartBase - IoT Adjustable Bed
John Singleton's The SmartBase makes your existing adjustable bed safer and easier to use by adding voice control and safe (and fun!) LED underbed lighting! Additionally, this project won first place prize in the 2019/20 Make with Ada competition.by Pat Rogers
From Ada to Platinum SPARK: A Case Study for Reusable Bounded Stacks
This blog entry describes the transformation of an Ada stack ADT into a completely proven SPARK implementation that relies on static verification instead of run-time enforcement of the abstraction’s semantics. We will prove that there are no reads of unassigned variables, no array indexing errors, no range errors, no numeric overflow errors, no attempts to push onto a full stack, no attempts to pop from an empty stack, that subprogram bodies implement their functional requirements, and so on. As a result, we get a maximally robust implementation of a reusable stack abstraction providing all the facilities required for production use.by Roderick Chapman
Proving properties of constant-time crypto code in SPARKNaCl
Over the last few months, I developed a SPARK version of the TweetNaCl cryptographic library. This was made public on GitHub in February 2020, under the 2-clause BSD licence. This blog entry goes into a bit more technical detail on one particular aspect of the project: the challenge of re-writing and verifying "constant time" algorithms using SPARK.by Quentin Ochem
Witnessing the Emergence of a New Ada Era
For nearly four decades the Ada language (in all versions of the standard) has been helping developers meet the most stringent reliability, safety and security requirements in the embedded market. As such, Ada has become an entrenched player in its historic A&D niche, where its technical advantages are recognized and well understood. Ada has also seen usage in other domains (such as medical and transportation) but its penetration has progressed at a somewhat slower pace. In these other markets Ada stands in particular contrast with the C language, which, although suffering from extremely well known and documented flaws, remains a strong and seldom questioned default choice. Or at least, when it’s not the choice, C is still the starting point (a gateway drug?) for alternatives such as C++ or Java, which in the end still lack the software engineering benefits that Ada embodies..
by Paul Butcher
AdaCore for HICLASS - Enabling the Development of Complex and Secure Aerospace Systems
What's changed?In 2019 AdaCore created a UK business unit and embarked on a new and collaborative venture researching and developing advanced UK aerospace systems. This blog introduces the reader to ‘HICLASS’, describes our involvement and explains how participation in this project is aligned with AdaCore’s core values.
by Michael Frank
Learning SPARK via Conway's Game of Life
How I learned to write SPARK-provable code using Conway's Game Of Lifeby Claire Dross
Using Pointers in SPARK
In this blog post, I will present one of the most interesting additions to the community 2019 version of SPARK: pointer support. One of the core assumption in SPARK has always been the absence of aliasing, so adding pointers without breaking this assumption was quite a challenge. I will explain how this was achieved using an ownership model for pointers (like is done in Rust) through small examples.by Boran Car

Bringing Ada To MultiZone
C is the dominant language of the embedded world, almost to the point of exclusivity. Due to its age, and its goal of being a “portable assembler”, it deliberately lacks type-safety, opening up exploit vectors. Proposed solutions are partitioning the application into smaller intercommunicating blocks, designed with the principle of least privilege in mind; and rewriting the application in a type-safe language. We believe that both approaches are complementary and want to show you how to combine separation and isolation provided by MultiZone together with iteratively rewriting parts in Ada. We will take the MultiZone SDK demo and rewrite one of the zones in Ada.by Allan Ascanius , Per Dalgas Jakobsen
Winning DTU RoboCup with Ada and SPARK
The Danish Technical University has a yearly RoboCup where autonomous vehicles solve a number of challenges. We participated with RoadRunner, a 3D printed robot with wheel suspension, based on the BeagleBone Blue ARM-based board and the Pixy 1 camera with custom firmware enabling real-time line detection. Code is written in Ada and formally proved correct with SPARK at Silver level.by Peter Chapin
Ten Years of Using SPARK to Build CubeSat Nano Satellites With Students
My colleague, Carl Brandon, and I have been running the CubeSat Laboratory at Vermont Technical College (VTC) for over ten years. During that time we have worked with nearly two dozen students on building and programming CubeSat nano satellites. Because of their general inexperience, and because of the high student turnover rate that is natural in an educational setting, our development process is often far from ideal. Here SPARK has been extremely valuable to us. What we lack in rigor of the development process we make up for in the rigor of the SPARK language and tools. In November 2013 we launched a low Earth orbiting CubeSat. The launch vehicle contained 13 other university built CubeSats. Most were never heard from. One worked for a few months. Ours worked for two years until it reentered Earth's atmosphere as planned in November 2015.by Yannick Moy , Nicolas Setton , Ben Brosgol
A Readable Introduction to Both MISRA C and SPARK Ada
MISRA C is the most widely known coding standard restricting the use of the C programming language for critical software. For good reasons. For one, its focus is entirely on avoiding error-prone programming features of the C programming language rather than on enforcing a particular programming style. In addition, a large majority of rules it defines are checkable automatically (116 rules out of the total 159 guidelines), and many tools are available to enforce those. As a coding standard, MISRA C even goes out of its way to define a consistent sub-language of C, with its own typing rules (called the "essential type model" in MISRA C) to make up for the lack of strong typing in C.
by Quentin Ochem
NVIDIA is joining the Ada and SPARK adopter wave
Over the past several years, a great number of public announcements have been made about companies that are either studying or adopting the Ada and SPARK programming languages. Noteworthy examples include Dolby, Denso, LASP and Real Heart, as well as the French Security Agency.
by Emma Adby

It's time to Make with Ada!
The challengeAre you ready to develop a project to the highest levels of safety, security and reliability? If so, Make with Ada is the challenge for you! We’re calling on embedded developers across the globe to build cool embedded applications using the Ada and SPARK programming languages and are offering over $8000 in total prizes. In addition, eligible students will compete for a reward of an Analog Discovery 2 Pro Bundle worth $299.99!
by Julia Teissl

Train control using Ada on a Raspberry Pi
I was looking for a topic for my master thesis in embedded systems engineering when one of my advisor proposed the idea of programming a control system for autonomous trains in Ada. Since I am fascinated by the idea of autonomous vehicles I agreed immediately without knowing Ada.
by Pamela Trevino
AdaCore major sponsor at HIS 2018
We are happy to announce that, AdaCore, alongside Altran and Jaguar Land Rover will be major sponsors of the fifth edition of the renowned High Integrity Software Conference on the 6th November in Bristol!
by Johannes Kanig
Taking on a Challenge in SPARK
Last week, the programmer Hillel posted a challenge (the link points to a partial postmortem of the provided solutions) on Twitter for someone to prove a correct implementation of three small programming problems: Leftpad, Unique, and Fulcrum.
by Fabien Chouteau , Yannick Moy , Vasiliy Fofanov , Nicolas Setton
A Modern Syntax for Ada
One of the most criticized aspect of the Ada language throughout the years has been its outdated syntax. Fortunately, AdaCore decided to tackle this issue by implementing a new, modern, syntax for Ada.by Felix Krause
The Road to a Thick OpenGL Binding for Ada: Part 2
This blog post is part two of a tutorial based on the OpenGLAda project and will cover implementation details such as a type system for interfacing with C, error handling, memory management, and loading functions.by Emma Adby
Welcoming New Members to the GNAT Pro Family
As we see the importance of software grow in applications, the quality of that software has become more and more important. Even outside the mission- and safety-critical arena customers are no longer accepting software failures (the famous blue screens of death, and there are many...). Ada has a very strong answer here and we are seeing more and more interest in using the language from a range of industries. It is for this reason that we have completed our product line by including an entry-level offer for C/C++ developers wanting to switch to Ada and reinforced our existing offer with GNAT Pro Assurance for programmers building the most robust software platforms with life cycles spanning decades.
by J. German Rivera

Make with Ada 2017- A "Swiss Army Knife" Watch
SummaryThe Hexiwear is an IoT wearable development board that has two NXP Kinetis microcontrollers. One is a K64F (Cortex-M4 core) for running the main embedded application software. The other one is a KW40 (Cortex M0+ core) for running a wireless connectivity stack (e.g., Bluetooth BLE or Thread). The Hexiwear board also has a rich set of peripherals, including OLED display, accelerometer, magnetometer, gryroscope, pressure sensor, temperature sensor and heart-rate sensor. This blog article describes the development of a "Swiss Army Knife" watch on the Hexiwear platform. It is a bare-metal embedded application developed 100% in Ada 2012, from the lowest level device drivers all the way up to the application-specific code, for the Hexiwear's K64F microcontroller. I developed Ada drivers for Hexiwear-specific peripherals from scratch, as they were not supported by AdaCore's Ada drivers library. Also, since I wanted to use the GNAT GPL 2017 Ada compiler but the GNAT GPL distribution did not include a port of the Ada Runtime for the Hexiwear board, I also had to port the GNAT GPL 2017 Ada runtime to the Hexiwear. All this application-independent code can be leveraged by anyone interested in developing Ada applications for the Hexiwear wearable device.
by Jonas Attertun

Make with Ada 2017: Brushless DC Motor Controller
This project involves the design of a software platform that provides a good basis when developing motor controllers for brushless DC motors (BLDC/PMSM). It consist of a basic but clean and readable implementation of a sensored field oriented control algorithm. Included is a logging feature that will simplify development and allows users to visualize what is happening. The project shows that Ada successfully can be used for a bare-metal project that requires fast execution.by Yannick Moy
New Guidance for Adoption of SPARK
While SPARK has been used for years in companies like Altran UK, companies without the same know-how may find it intimidating to get started on formal program verification. To help with that process, AdaCore has collaborated with Thales throughout the year 2016 to produce a 70-pages detailed guidance document for the adoption of SPARK. These guidelines are based on five levels of assurance that can be achieved on software, in increasing order of costs and benefits: Stone level (valid SPARK), Bronze level (initialization and correct data flow), Silver level (absence of run-time errors), Gold level (proof of key properties) and Platinum level (full functional correctness). These levels, and their mapping to the Development Assurance Levels (DAL) and Safety Integrity Levels (SIL) used in certification standards, were presented at the recent High Confidence Software and Systems conference.by Anthony Leonardo Gracio
GPS for bare-metal developers
In my previous blog article, I exposed some techniques that helped me rewrite the Crazyflie’s firmware from C into Ada and SPARK 2014, in order to improve its safety.
by Emmanuel Briot
New strings package in GNATCOLL
This post describes the new GNATCOLL.Strings package, and the various optimizations it performs to provide improved performance.by Yannick Moy
Verified, Trustworthy Code with SPARK and Frama-C
Last week, a few of us at AdaCore have attended a one-day workshop organized at Thales Research and Technologies, around the topic of "Verified, trustworthy code - formal verification of software". Attendees from many different branches of Thales (avionics, railway, security, networks) were given an overview of the state-of-practice in formal verification of software, focused on two technologies: the SPARK technology that we develop at AdaCore for programs in Ada, and the Frama-C technology developed at CEA research labs for programs in C. The most interesting part of the day was the feedback given by three operational teams who have experimented during a few months with either SPARK (two teams) or Frama-C (one team). The lessons learned by first-time adopters of such technologies are quite valuable.by Quentin Ochem

Unity & Ada
Using Ada technologies to develop video games doesn’t sound like an an obvious choice - although it seems like there could be an argument to be made. The reverse, however, opens some more straightforward perspectives.by Emma Adby

Provably safe programming at Embedded World
AdaCore continues to build reliable and secure software for embedded software development tools. Last month, we attended Embedded World 2016, one of the largest conferences of its kind in Europe, to present our embedded solutions and our expertise for safety, and mission critical applications in a variety of domains.
by Emma Adby

Embedded Product Line Updates
Embedded products are not stand alone, this allows them to have safety, mission critical and real-time requirements that they wouldn’t necessarily have otherwise. The embedded product line provides analyzable, verifiable, and certifiable software for both static and dynamic analysis tools.
by Emma Adby

QGen 2.1 Release!
Embedded World will see the latest release of QGen, the qualifiable and customisable code generator for Simulink® and Stateflow® models!
by Emma Adby
Formal Verification Made Easy!
We are pleased to announce our latest release of SPARK Pro! A product that has been jointly developed alongside our partner Altran and following the global AdaCore Tech Days, you can now see the SPARK 2014 talk, Formal Verification Made Easy by AdaCore’s Hristian Kirtchev, on YouTube.
by Emma Adby

ERTS and Embedded World conferences 2016
We are pleased to announce that we will be a major sponsor and exhibitor at ERTS, Toulouse and will be exhibiting at Embedded World, Nuremberg in the coming months!
by Emma Adby
Dissimilar tools: Use cases and impact on tool qualification level
Frederick Pothon of ACG Solutions has recently published a document entitled - Dissimilar tools: Use cases and impact on tool qualification level on the open-DO blog.
by Emma Adby

HIS Conference 2015, Bristol
We are excited to be sponsoring and exhibiting at the 2nd annual High Integrity Software conference, taking place on 5th November 2015 at The Royal Marriott Hotel in Bristol.
by Emmanuel Briot
Traits-Based Containers
This post describes the design of a new containers library. It highlights some of the limitations of the standard Ada containers, and proposes a new approach using generic packages as formal parameters to make these new containers highly configurable at compile time.by Jack Mellor
2015: A Space Ada‑ssey
AdaCore has a long history of providing tools and support to develop mission critical applications for Space. Check out this video we made and showed at the conference to see which ones!by Yannick Moy
SPARKSkein: From tour-de-force to run-of-the-mill Formal Verification
In 2010, Rod Chapman released an implementation in SPARK of the Skein cryptographic hash algorithm, and he proved that this implementation was free of run-time errors. That was a substantial effort with the previous version of the SPARK technology. We have recently translated the code of SPARKSkein from SPARK 2005 to SPARK 2014, and used GNATprove to prove absence of run-time errors in the translated program. The difference between the two technologies is striking. The heroic effort that Rod put in the formal verification of the initial version of SPARKSkein could now be duplicated with modest effort and modest knowledge of the technology, thanks to the much greater proof automation that the SPARK 2014 technology provides, as well as various features that lower the need to provide supporting specifications, most notably contracts on internal subprograms and loop invariants.by Anthony Leonardo Gracio
How to prevent drone crashes using SPARK
The Crazyflie is a very small quadcopter sold as an open source development platform: both electronic schematics and source code are directly available on their GitHub and its architecture is very flexible. Even if the Crazyflie flies out of the box, it has not been developed with safety in mind: in case of crash, its size, its weight and its plastic propellers won’t hurt anyone! But what if the propellers were made of carbon fiber, and shaped like razor blades to increase the drone’s performance? In theses circumstances, a bug in the flight control system could lead to dramatic events. In this post, I present the work I did to rewrite the stabilization system of the Crazyflie in SPARK 2014, and to prove that it is free of runtime errors. SPARK also helped me to discover little bugs in the original firmware, one of which directly related with overflows. Besides the Crazyflie, this work could be an inspiration for others to do the same work on larger and more safety-critical drones.by Emmanuel Briot
Count them all (reference counting)
Reference countingReference counting is a way to automatically reclaim unused memory. An element is automatically deallocated as soon as there are no more references to it in the program.
by Karen Mason

The Year for #AdaLove
Despite her famously sharp analytical mind, it’s unlikely Ada Lovelace could have predicted the durability of her legacy as the world’s first computer programmer and pioneer for women in computing.
by Yannick Moy

A Building Code for Building Code
In a recent article in Communications of the ACM, Carl Landwehr, a renowned scientific expert on security, defends the view that the software engineering community is doing overall a poor job at securing our global information system and that this is mostly avoidable by putting what we know works to work, to the point that most vulnerabilities could be completely avoided by design if we cared enough. Shocking! Or so it should appear.by Emma Adby
QGen on Embedded News TV
Embedded News TV caught up with our own Matteo Bordin to talk about QGen. Matteo provides a nice overview of QGen and it's position in the industry as the need for safe and secure software becomes increasingly important.
by Emma Adby

20 years on...
20 Years of AdaCore: Company as Committed as Ever on Safety-Critical Software Solutions
by Olivier Ramonat

AdaCore Releases GNAT Pro 7.3, QGen 1.0 and GNATdashboard 1.0
February saw the annual customer release of a number of important products. This is no mean task when you consider the fact that GNAT Pro is available on over 50 platforms and supports over 150 runtime profiles (ranging from Full Ada Support to the very restricted Zero Footprint Profile suitable for safety-critical development). All in all, from the branching of the preview version to the customer release it takes us nearly 4 months to package everything up! Quality is assured through the internally developed AdaCore Factory.
by Tristan Gingold , Yannick Moy

Tetris in SPARK on ARM Cortex M4
Tetris is a well-known game from the 80's, which has been ported in many versions to all game platforms since then. There are even versions of Tetris written in Ada. But there was no version of Tetris written in SPARK, so we've repaired that injustice. Also, there was no version of Tetris for the Atmel SAM4S ARM processor, another injustice we've repaired.