AdaCore Blog

19 entries tagged with #IDE

by Emma Adby

Make with Ada 2020: Disaster Management with Smart Circuit Breaker

Shahariar's project ensures safety against electrical fire or shock during an earthquake, flood, gas leakage or fire breakout by disconnecting the mains with a smart circuit breaker. Additionally, this project won a finalist prize in the 2019/20 Make with Ada competition.

by Emma Adby

Make with Ada 2020: The SmartBase - IoT Adjustable Bed

John Singleton's The SmartBase makes your existing adjustable bed safer and easier to use by adding voice control and safe (and fun!) LED underbed lighting! Additionally, this project won first place prize in the 2019/20 Make with Ada competition.

#MakewithAda    #Ada    #SPARK   

by Nicolas Setton

GNAT Community 2020 is here!

We are happy to announce that the GNAT Community 2020 release is now available! Read the post for access to download and to find out about this year's release highlights.

by Pat Rogers

From Ada to Platinum SPARK: A Case Study for Reusable Bounded Stacks

This blog entry describes the transformation of an Ada stack ADT into a completely proven SPARK implementation that relies on static verification instead of run-time enforcement of the abstraction’s semantics. We will prove that there are no reads of unassigned variables, no array indexing errors, no range errors, no numeric overflow errors, no attempts to push onto a full stack, no attempts to pop from an empty stack, that subprogram bodies implement their functional requirements, and so on. As a result, we get a maximally robust implementation of a reusable stack abstraction providing all the facilities required for production use.

#SPARK    #Ada    #Transitioning to SPARK   

by Johannes Kliemann

Ada on the ESP8266

Not long ago, AdaCore published its LLVM frontend for GNAT. Also quite recently Espressif updated their LLVM backend to LLVM 9 which also happens to be the LLVM version of GNAT. This gave me to the idea to try out if LLVMs promise of providing modular and reusable toolchain technologies is true.

by Ghjuvan Lacambre

Time travel debugging in GNAT Studio with GDB and RR

Learn how to use GDB and RR's advanced time traveling features in GNAT Studio.

#IDE    #gdb   

by Fabien Chouteau

Ada on a Feather

I was quite happy to see AdaFruit release their first Feather format board including a micro-controller with plenty of Ada support, the STM32F4. I bought a board right away and implemented some support code for it.

#embedded    #STM32   

by Juan Zamorano

Using Ada for a Spanish Satellite Project

I am an Associate Professor at Polytechnic University of Madrid’s (Universidad Politécnica de Madrid / UPM) in the Department of Architecture and Technology of Computer Systems. For the past several years I have been directing a team of colleagues and students in the development of a UPMSat-2 microsatellite. The project originally started in 2013 as a follow-to the UPM-SAT 1, launched by an Ariane-4 in 1995.

by Emma Adby, Fabien Chouteau

GNAT Community 2018 is here!

Calling all members of the Ada and SPARK community, we are pleased to announce that GNAT Community 2018 is here! adacore.com/download

by Rob Tice

SPARKZumo Part 2: Integrating the Arduino Build Environment Into GPS

This is part #2 of the SPARKZumo series of blog posts. This post covers the build system that was used to build the SPARKZumo project and how to automate the process in GPS.

#GPS    #Python    #Libadalang    #Arduino    #CCG   

by Fabien Chouteau

Ada on the micro:bit

Updated July 2018

#embedded    #Ada    #nRF51    #ARM   

by Yannick Moy

For All Properties, There Exists a Proof

With the recent addition of a Manual Proof capability in SPARK 18, it is worth looking at an example which cannot be proved by automatic provers, to see the options that are available for proving it with SPARK. We present three ways to complete a proof beyond what automatic provers can do: using an alternative automatic prover, proving interactively inside our GPS IDE, and using an alternative interactive prover.

#SPARK    #Formal Methods   

by J. German Rivera

Make with Ada 2017- A "Swiss Army Knife" Watch

Summary  The Hexiwear is an IoT wearable development board that has two NXP Kinetis microcontrollers. One is a K64F (Cortex-M4 core) for running the main embedded application software. The other one is a KW40 (Cortex M0+ core) for running a wireless connectivity stack (e.g., Bluetooth BLE or Thread). The Hexiwear board also has a rich set of peripherals, including OLED display, accelerometer, magnetometer, gryroscope, pressure sensor, temperature sensor and heart-rate sensor. This blog article describes the development of a "Swiss Army Knife" watch on the Hexiwear platform. It is a bare-metal embedded application developed 100% in Ada 2012, from the lowest level device drivers all the way up to the application-specific code, for the Hexiwear's K64F microcontroller. I developed Ada drivers for Hexiwear-specific peripherals from scratch, as they were not supported by AdaCore's Ada drivers library. Also, since I wanted to use the GNAT GPL 2017 Ada compiler but the GNAT GPL distribution did not include a port of the Ada Runtime for the Hexiwear board, I also had to port the GNAT GPL 2017 Ada runtime to the Hexiwear. All this application-independent code can be leveraged by anyone interested in developing Ada applications for the Hexiwear wearable device.

by Yannick Moy

Applied Formal Logic: Searching in Strings

A friend pointed me to recent posts by Tommy M. McGuire, in which he describes how Frama-C can be used to functionally prove a brute force version of string search, and to find a previously unknown bug in a faster version of string search called quick search. Frama-C and SPARK share similar history, techniques and goals. So it was tempting to redo the same proofs on equivalent code in SPARK, and completing them with a functional proof of the fixed version of quick search. This is what I'll present in this post.

#Dev Projects    #Formal Verification    #SPARK   

by Pierre-Marie de Rodat, Nicolas Setton

GNAT GPL 2017 is out!

For those users of the GNAT GPL edition, we are pleased to announce the availability of the 2017 release of GNAT GPL and SPARK GPL.

#GNAT GPL   

by Yannick Moy, Nicolas Roche

A Usable Copy-Paste Detector in A Few Lines of Python

After we created lightweight checkers based on the recent Libadalang technology developed at AdaCore, a colleague gave us the challenge of creating a copy-paste detector based on Libadalang. It turned out to be both easier than anticipated, and much more efficient and effective than we could have hoped for. In the end, we hope to use this new detector to refactor the codebase of some of our tools, and we expect to integrate it in our IDEs.

#Libadalang    #Static Analysis    #refactoring   

by Pat Rogers

Getting started with the Ada Drivers Library device drivers

The Ada Drivers Library (ADL) is a collection of Ada device drivers and examples for ARM-based embedded targets. The library is maintained by AdaCore, with development originally (and predominantly) by AdaCore personnel but also by the Ada community at large.  It is available on GitHub and is licensed for both proprietary and non-proprietary use.

#Ada    #Devices    #drivers    #STM32    #embedded   

by Raphaël Amiard, Yannick Moy, Pierre-Marie de Rodat

Going After the Low Hanging Bug

At AdaCore, we have a strong expertise in deep static analysis tools (CodePeer and SPARK), and we have been relying on the compiler GNAT and our coding standard checker GNATcheck to deal with more syntactic or weakly-semantic checks. The recent Libadalang technology, developed at AdaCore, provided us with an ideal basis to develop specialized light-weight static analyzers. As an experiment, we implemented two simple checkers using the Python binding of Libadalang. The results on our own codebase were eye-opening: we found a dozen bugs in the codebases of the tools we develop at AdaCore (including the compiler and static analyzers).

#Static Analysis   

by Raphaël Amiard, Pierre-Marie de Rodat

Introducing Libadalang

AdaCore is working on a host of tools that works on Ada code. The compiler, GNAT, is the most famous and prominent one, but it is far from being the only one. At AdaCore, we already have several other tools to process Ada code: the ASIS library, GNAT2XML, the GPS IDE. A realization of the past years, however, has been that we were lacking a unified solution to process code that is potentially evolving, potentially incorrect Ada code. Hence Libadalang.

#Ada    #tooling