AdaCore Blog

38 entries tagged with #Libraries

by Maxim Reznik

Introduction to VSS library

The VSS (as an abbre­vi­a­tion for Vir­tu­al String Sub­sys­tem) library is designed to pro­vide advanced string and text pro­cess­ing capa­bil­i­ties. It offers a con­ve­nient and robust API that allows devel­op­ers to work with Uni­code text, regard­less of its inter­nal rep­re­sen­ta­tion. In this arti­cle, we will intro­duce you to the library and explain its pur­pose, high­light­ing its use­ful­ness for devel­op­ers work­ing in this area.

#Unicode    #strings    #Libraries    #vss   

by Fabien Chouteau

Ada/SPARK Crate Of The Year 2022 Winners Announced!

In June of 2022 we launched the second edition of the Ada/SPARK Crate Of The Year Awards. We believe the Alire source package manager is a game changer for Ada/SPARK, so we want to use this competition to reward the people contributing to the ecosystem. Today we are pleased to announce the results. But first, we want to congratulate all the participants, and the Alire community at large, for reaching 320 crates in the ecosystem in January of this year. We truly believe in a bright future for the Ada/SPARK open-source ecosystem with Alire at the forefront. Reaching this milestone is a great sign,both inside and outside the Ada/SPARK community, of the evolution and the energy of the ecosystem.

by Johannes Kliemann

Adding Ada to Rust

While implementing application logic in Ada or SPARK is an improvement over a pure C project, its weakest link is still the C code in the SDK. On the other hand, there are many libraries, board support packages, and SDKs written in Rust, easily usable with Cargo. So instead of building the Ada application on top of a C base, one could use a Rust base instead to combine the large catalog of ready-to-use software with Rust's safety features, providing a much more solid base for an Ada project.

by Fabien Chouteau

Embedded Ada/SPARK, There's a Shortcut

For years in this blog my colleagues and I have published examples, demos, and how-to’s on Ada/SPARK embedded (as in bare-metal) development. Most of the time, if not always, we focused on one way of doing things: to start from scratch and write everything in Ada/SPARK, from the low level drivers to the application. While this way of doing Ada/SPARK embedded will yield the best results in terms of software quality, it might not be the most efficient in all cases. In this blog post I want to present an alternative method to introduce Ada/SPARK into your embedded development projects.


by Quentin Ochem , Florian Gilcher

AdaCore and Ferrous Systems Joining Forces to Support Rust

For over 25 years, AdaCore has been committed to supporting the needs of safety- and mission-critical industries. This started with an emphasis on the Ada programming language and its toolchain, and over the years has been extended to many other technologies. AdaCore’s product offerings today include support for the Ada language and its formally verifiable SPARK subset, C and C++, and Simulink and Stateflow models. We have accomplished this while addressing the requirements of various safety standards such as DO-178B/C, EN 50128, ECSS-E-ST-40C / ECSS-Q-ST-80C, IEC 61508 and ISO 26262.

by Kyriakos Georgiou

Security-Hardening Software Libraries with Ada and SPARK

Part of AdaCore's ongoing efforts under the HICLASS project is to demonstrate how the SPARK technology can play an integral part in the security-hardening of existing software libraries written in other non-security-oriented programming languages such as C. This blog post presents the first white paper under this work-stream, “Security-Hardening Software Libraries with Ada and SPARK”.

#SPARK    #STM32    #Embedded   

by Paul Butcher

Finding Vulnerabilities using Advanced Fuzz testing and AFLplusplus v3.0

Some of you may recall an AdaCore blog post written in 2017 by Thales engineer Lionel Matias titled "Leveraging Ada Run-Time Checks with Fuzz Testing in AFL". This insightful post took us on a journey of discovery as Lionel demonstrated how Ada programs, compiled using GNAT Pro and an adapted assembler pass can be subjected to advanced fuzz testing. In order to achieve this Lionel demonstrated how instrumentation of the generated assembly code around jump and label instructions, could be subjected to grey-box (path aware) fuzz testing (using the original AFL v2.52b as the fuzz engine). Lionel explained how applying the comprehensive spectrum of Ada runtime checks, in conjunction with Ada's strong typing and contract based programming, enhanced the capabilities of fuzz testing beyond the abilities of other languages. Ada's advanced runtime checking, for exceptions like overflows, and the scrutiny of Ada's design by contract assertions allow corner case bugs to be found whilst also utilising fuzz testing to verify functional correctness.


by Boran Car

Bringing Ada To MultiZone

C is the dominant language of the embedded world, almost to the point of exclusivity. Due to its age, and its goal of being a “portable assembler”, it deliberately lacks type-safety, opening up exploit vectors. Proposed solutions are partitioning the application into smaller intercommunicating blocks, designed with the principle of least privilege in mind; and rewriting the application in a type-safe language. We believe that both approaches are complementary and want to show you how to combine separation and isolation provided by MultiZone together with iteratively rewriting parts in Ada. We will take the MultiZone SDK demo and rewrite one of the zones in Ada.

#Ada    #Embedded    #Embedded Development    #Security    #multizone    #Hex-Five   

by Lionel Matias

Leveraging Ada Run-Time Checks with Fuzz Testing in AFL

Fuzzing is a very popular bug finding method. The concept, very simple, is to continuously inject random (garbage) data as input of a software component, and wait for it to crash. If, like me, you find writing robustness test tedious and not very efficient in finding bugs, you might want to try fuzzing your Ada code.Here's a recipe to fuzz-test your Ada code, using American Fuzzy Lop and all the runtime checks your favorite Ada compiler can provide.Let's see (quickly) how AFL works, then jump right into fuzzing 3 open-source Ada libraries: ZipAda, AdaYaml, and GNATCOLL.JSON.

#Testing    #Ada    #VerificationTools   

by Rob Tice

The Adaroombot Project

The Adaroombot project consists of an iRobot CreateⓇ 2 and Ada running on a Raspberry Pi with a Linux OS. This is a great Intro-to-Ada project as it focuses on a control algorithm and a simple serial communications protocol. The iRobot CreateⓇ 2 platform was originally design for STEM education and has great documentation and support - making it very easy to create a control application using Ada. This blog looks at the creation of the project and some cool features of Ada that were learned along the way.

#Raspberry Pi    #ARM    #Linux    #Ada    #Roomba