AdaCore Blog

23 entries tagged with #Events

by Jon Andrew

CuBit: A General-Purpose Operating System in SPARK/Ada

Last year, I started evaluating programming languages for a formally-verified operating system. I've been developing software for a while, but only recently began work in high integrity software development and formal methods. There are several operating system projects, like the SeL4 microkernel and the Muen separation kernel, that make use of formal verification. But I was interested in using a formally-verified language to write a general-purpose OS - an environment for abstracting the underlying hardware while acting as an arbiter for running the normal applications we're used to.

by Boran Car

Bringing Ada To MultiZone

C is the dominant language of the embedded world, almost to the point of exclusivity. Due to its age, and its goal of being a “portable assembler”, it deliberately lacks type-safety, opening up exploit vectors. Proposed solutions are partitioning the application into smaller intercommunicating blocks, designed with the principle of least privilege in mind; and rewriting the application in a type-safe language. We believe that both approaches are complementary and want to show you how to combine separation and isolation provided by MultiZone together with iteratively rewriting parts in Ada. We will take the MultiZone SDK demo and rewrite one of the zones in Ada.

#Ada    #embedded    #Embedded Development    #Security    #multizone    #Hex-Five   

by Lionel Matias

Leveraging Ada Run-Time Checks with Fuzz Testing in AFL

Fuzzing is a very popular bug finding method. The concept, very simple, is to continuously inject random (garbage) data as input of a software component, and wait for it to crash. If, like me, you find writing robustness test tedious and not very efficient in finding bugs, you might want to try fuzzing your Ada code.Here's a recipe to fuzz-test your Ada code, using American Fuzzy Lop and all the runtime checks your favorite Ada compiler can provide.Let's see (quickly) how AFL works, then jump right into fuzzing 3 open-source Ada libraries: ZipAda, AdaYaml, and GNATCOLL.JSON.

#Testing    #Ada    #VerificationTools   

by Yannick Moy

(Many) More Low Hanging Bugs

We reported in a previous post our initial experiments to create lightweight checkers for Ada source code, based on the new Libadalang technology. The two checkers we described discovered 12 issues in the codebase of the tools we develop at AdaCore. In this post, we are reporting on 6 more lightweight checkers, which have discovered 114 new issues in our codebase. This is definitely showing that these kind of checkers are worth integrating in static analysis tools, and we look forward to integrating these and more in our static analyzer CodePeer for Ada programs.

#Static Analysis    #Libadalang   

by Jorge Real

Writing on Air

While searching for motivating projects for students of the Real-Time Systems course here at Universitat Politècnica de València, we found a curious device that produces a fascinating effect. It holds a 12 cm bar from its bottom and makes it swing, like an upside-down pendulum, at a frequency of nearly 9 Hz. The free end of the bar holds a row of eight LEDs. With careful and timely switching of those LEDs, and due to visual persistence, it creates the illusion of text... floating in the air!

#STM32    #Ravenscar    #Ada    #Makers    #Embedded Development   

by Pierre-Marie de Rodat

C library bindings: GCC plugins to the rescue

I recently started working on an Ada binding for the excellent libuv C library. This library provides a convenient API to perform asynchronous I/O under an event loop, which is a popular way to develop server stacks. A central part of this API is its enumeration type for error codes: most functions use it. Hence, one of the first things I had to do was to bind the enumeration type for error codes. Believe it or not: this is harder than it first seems!

#Code generation    #Ada   

by Anthony Leonardo Gracio

How to prevent drone crashes using SPARK

The Crazyflie is a very small quadcopter sold as an open source development platform: both electronic schematics and source code are directly available on their GitHub and its architecture is very flexible. Even if the Crazyflie flies out of the box, it has not been developed with safety in mind: in case of crash, its size, its weight and its plastic propellers won’t hurt anyone! But what if the propellers were made of carbon fiber, and shaped like razor blades to increase the drone’s performance? In theses circumstances, a bug in the flight control system could lead to dramatic events. In this post, I present the work I did to rewrite the stabilization system of the Crazyflie in SPARK 2014, and to prove that it is free of runtime errors. SPARK also helped me to discover little bugs in the original firmware, one of which directly related with overflows. Besides the Crazyflie, this work could be an inspiration for others to do the same work on larger and more safety-critical drones.

#UAVs    #crazyflie    #SPARK    #Drones