SPARK 2014

Quick Reference Examples

Aspects

aspect_specification ::=
with aspect_mark [=> aspect_definition]
{, aspect_mark [=> aspect_definition] }

SPARK Mode

package P
with SPARK_Mode => On
is
—— package spec is SPARK, so can be used
—— by SPARK clients
end P;

package body P
with SPARK_Mode => Off
is
—— body is NOT SPARK, so assumed to
-- be full Ada
end P;

Subprogram Contracts
PRECONDITIONS

function F (X : Integer) return Integer
with Pre => X x X < 100;

procedure P (X : Integer; Y : Integer)
with Pre => X + Y = 0 and then F (Y) /= 0;

procedure Some_Call
with Pre => Initialized; —- before it is declared
Initialized : Boolean := False;

POSTCONDITIONS
procedure Increment (X : in out Integer)
with Pre => X < Integer’last,
Post => X = X'0ld + 1;

CONTRACT CASES

procedure Bounded_Add
(X, Y : in Integer; Z : out Integer)
with Contract_Cases =>

((X + Y in Integer’'Range) => Z = X + Y,
Integer’First > X + Y => Z = Integer'First,
X + Y > Integer’lLast => Z = Integer’Last);
GLOBAL CONTRACTS
procedure P
with Global => (Input = (A, B, (),

In_Out => (X, Y, 2),

B
Output => (L, M, N),

Y
Proof_In => (I, J, K));

DEPENDS CONTRACTS
Contracts for information flow analysis.
procedure Sum

(A, B : in Integer; Result : out Integer)
with Depends => (Result => (A, B));

+ indicates self -dependency

procedure Update_Array (A : in out Array_Type;
I: in Index_Type;
X & in Elem_Type)

with Depends => (A => +(I, X));

procedure Clear_Stack (S : out Stack)
with Depends => (S => null);

procedure P (X, Y, Z : in T)
with Depends => (null => (X, Y, Z));

ASSUME
No verification condition generated - soundness alert!
Use with great care.

pragma Assume (Ticks < Time_Type’last);

LOOP INVARIANT

pragma Loop_Invariant
(J in Low .. High and
(for all K in Low .. J => not Is_Prime (K)));

LOOP VARIANT

pragma Loop_Variant (Increases => I,
Decreases => F (X));

LOOP ENTRY

type Array_T is
array (1 .. 10) of Integer range 0 .. 7;

for I in A’Range loop
Result := Result + A (I);
pragma Loop_Invariant
(Result <= Result’Loop_Entry + 7 * I);
end loop;

Expressions

Expressions that are particularly useful when writing contracts

IF EXPRESSIONS
A := (if X then 2 else 3);

CASE EXPRESSIONS

B := (case Y is
when E1 => V1,
when E2 => V2,
when others => V3);

BOOLEAN SHORT-CIRCUIT OPERATORS

function F (X, Y : Integer) return Integer
with Pre => (Y /= 0 and then X/Y > Limit);

function G (X, Y : Integer) return Integer
with Pre => (Y /= 0 or else (X/Y) /= 10);

QUANTIFIED EXPRESSIONS

procedure Set_Array (A: out Array_Type)
with Post => (for all M in A’Range => A(M) = M);

function Contains (A 1 Array_Type;
Val : Element_Type) return Boolean
with Post => (for some J in A’Range => A(J) = Val);

EXPRESSION FUNCTIONS

function Value_Found_In_Range
(A 1 Arr;
Val : Element;
Low, Up : Index) return Boolean
is (for some J in Low .. Up => A(J) = Val)

function Add_One (X : in Integer) return Integer
is (X + 1)
with Pre => (X < Integer’lLast);

"RESULT
package Find is
type A is array (1..10) of Integer;
function Find (T : A; R : Integer) return Integer
with Post => Find’Result >= 0 and then
(if Find’Result /= @ then T(Find’Result) = R);
end Find;

'UPDATE EXPRESSIONS
procedure P (R : in out Rec)
with
Post => R = R’0ld’Update (X => 1, Z => 5);

Al := Some_Array’Update (1 .. 10 => True,
5 => False);

A2 := Some_Array’Update (Param_1’'Range => True,
Param_2’Range => False);

"OLD EXPRESSIONS

procedure Increment (X : in out Integer)
with Post => X = X’'0ld + 1;

Some_Global : Integer;

procedure Call_Not_Modify_Global
with Post => Some_Global =
Some_Global’0ld;

type T is record
A : Integer;
B : Integer
end record;

function F (V : T) return Integer;

procedure P (V : in out T)
with Post => V'0ld.A /= V.A and then
V.B'0ld /= V.B and then
F (v'0ld) /= F (V) and then
F (V)'0ld /= F (V);

pragma Unevaluated_Use_0f_0ld (Allow);
-— to allow Expr’Old when Expr not variable,
-— 1in context not always evaluated



Package Contracts

ABSTRACT STATE
package P
with Abstract_State =>
(Essential_State, Result_Cache)
—— Parentheses not requied
—— 1f only one state abstraction
is

end P;

REFINED STATE
package body P
with Refined_State =>
(Essential_State => (E1, E2),
Result_Cache => Cache)

is

end P;

INITIALIZATION

package A_Stack

with Abstract_State => Stack,

Initializes => Stack,
Initial_Condition => Stack_Empty
—-- state abstractions are not listed
—— 1in an Initializes contract if they are
-- not initialized by package elaboration

is

function Stack_Empty return Boolean
with Global => Stack;

end A_Stack;

package Three_States
with Abstract_State =>

(State_1,

State_2,

Unintitialized_State),
Initializes =>

(State_1, State_2)
is

end Three_States;

EXTERNAL STATE
with System.Storage_Elements;

package Output_Port
is
Sensor : Integer
with Volatile,
Async_Readers,
Address =>
System.Storage_Elements.To_Address
(16#ACECAFE#) ;
end Output_Port;

package Abstract_Input_Device
with Abstract_State =>
(Input_Dev with External =>
(Async_Writers, Effective_Reads)),
Initializes => Input_Dev
is

end Abstract_Input_Device;

PART_OF

package P
with Abstract_State => State_P
is
private
Hidden_Var : Integer with
Part_0f => State_P;

end P;

package Q

with Abstract_State => (S1, S2),

Initializes => S1

is
end Q;
private package Q.Child

with Abstract_State =>

(Child_State with Part_0f => Q.S1),

Initializes => Child_State
is

end Q.Child;

Warnings and Check Message
Control

package body Warnings_Example is
pragma Warnings
(0ff, “formal parameter “”X"” is not referenced”);
procedure Mumble (X : Integer) is
pragma Warnings
(On, “formal parameter “”X”" is not referenced”);
-— X 1s ignored here, because ... etc.
begin
null;
end Mumble;
end Warnings_Example;

Remember that every failed check message corresponds to a
soundness issue and should be reviewed / justified individually.

return (X +Y) / (X - Y);
pragma Annotate
(GNATprove, False_Positive,
“divide by zero”, “reviewed by John Smith”);

procedure Do_Something (X, Y : in out Integer) with
Depends => ((X, Y) => (X, Y));
pragma Annotate
(GNATprove, Intentional,
“incorrect dependency “"Y => X""",
“Dependency is kept for compatibility reasons”);

Flags for the SPARK Tools

Options for the compiler and GNATprove.

OVERFLOW CHECKING MODES

GNAT Pro compiler switch controls semantics of overflow
checks in assertions (contracts) and code. Three modes:

1 = strict Ada semantics for overflow checking
2 = minimized overflow checking

3 = eliminated - no possibility of overflow (mathematical
semantics)

Example: -gnatol13

* First digit specifies overflow mode for code.

* Second digit specifies overflow mode for contracts.

Copyright © 2014-2016 Altran UK and AdaCore



