
Verification and testing of mobile robot navigation algorithms:
A case study in SPARK

Piotr Trojanek and Kerstin Eder

Abstract— Navigation algorithms are fundamental for mobile
robots. While the correctness of the algorithms is important, it
is equally important that they do not fail because of bugs in
their implementation. Yet, even widely-used robot navigation
code lacks proofs of correctness or credible coverage reports
from testing. Robot software developers usually point towards
the cost of manual verification or lack of automated tools that
would handle their code. We demonstrate that the choice of
programming language is essential both for finding bugs in
the code and for proving their absence. Our re-implementation
of three robot navigation algorithms in SPARK revealed bugs
that for years have not been detected in their original code in
C/C++. For one of the implementations we demonstrate that it
is free from run-time errors. Our code and results are available
online to encourage uptake by the robot software developers
community.

I. INTRODUCTION
In this paper we focus on the verification of code that

implements robot navigation algorithms. These algorithms
guide the robot towards a goal while avoiding obstacles
within the range of on-board sensors. Comparing to path
planning algorithms, they seem more important for the safety
of the robot mission (if they fail then robot can hit the wall),
more difficult to debug (if robot goes wrong it can be result
of a problem that occurred few iterations of the algorithm
before) and more challenging to prove safe (they operate on
data from real sensors and not on idealized models of the
environment).

Navigation algorithms are typically embedded within ro-
bot control software as modules with well-defined bound-
aries and implemented as drivers, components or nodes
(depending upon the vocabulary preferred by authors of a
particular robot software framework). Traditionally, they are
considered as low-level control algorithms that—mostly for
performance, but also for portability and reusability—should
be implemented in C or C++. These languages, and C in
particular, are well-known for being inherently unsafe. They
enable the programmer to write code whose behaviour cannot
be explained in terms of the language definition.

In our study we are interested in proving that none of the
following occurs when executing robot navigation code:

• array out-of-bounds accesses,
• run-time exceptions, such as those related to the use of

data containers,
• integer and floating-point arithmetic errors, e.g. divi-

sions by zero, overflows and underflows,

This work was supported by the EPSRC grant EP/J01205X/1 RIVERAS:
Robust Integrated Verification of Autonomous Systems. Both authors are
with the Department of Computer Science, University of Bristol, UK. Email:
{Piotr.Trojanek,Kerstin.Eder}@bris.ac.uk

• calls to mathematical functions, e.g. square root, with
arguments out of their domains,

• null pointer dereferences,
• dynamic memory allocations, which may affect real-

time behaviour of the robot,
• calls to potentially blocking operations, e.g. locking a

mutex,
• accesses to uninitialized data and
• any operation with results not specified by the program-

ming language definition.
Testing of robot control software, which is the most

common approach to gain confidence in its reliability, is
difficult to be done exhaustively. Robot navigation algorithms
should be tested with all possible values of sensor data,
goal poses, internal state variables and parameters, such as
robot dimensions. Even with a simulator and an automated
testing procedure some common bugs in C/C++, such as out-
of-bounds array accesses, may remain undetected.

Instead of verifying existing C/C++ robot software we
translated three open-source implementations of well-known
robot navigation algorithms to SPARK—a programming lan-
guage designed to develop high-reliability software. The goal
of our case study is to demonstrate that the run-time safety of
robot navigation algorithms implemented in SPARK is easier
to test and prove. In Section II we introduce the reader to the
origins of SPARK, compare it with C/C++ and demonstrate
its suitability for verification of robot control software. In
Section III we present bugs that we found after translating the
original C/C++ code to SPARK and explain how we proved
the absence of bugs in our code. In Section IV we discuss
our approach in terms of effort and the performance of the
resulting, verified code. We justify our choices and compare
our results with related work in Section V. We conclude and
outline possible extensions of this work in Section VI.

II. SPARK AND ROBOT NAVIGATION CODE
SPARK is an imperative, strongly-typed language de-

signed for the development of reliable software. Technically,
it is a subset of Ada—a general purpose programming lan-
guage originally designed for use in military applications [1].
Ada offers many features that make it the perfect choice
for embedded and real-time software. SPARK restricts the
use of those constructs of Ada that make the code difficult
to verify. While Ada is often compared to C++, SPARK is
typically compared to MISRA-C—a set of guidelines for the
use of C in critical systems.1 SPARK was designed with soft-

1See http://www.spark-2014.org/ for the detailed comparison
of the latest versions of MISRA-C and SPARK.

http://www.spark-2014.org/


ware reliability in mind; in contrast, MISRA-C attempts to
eliminate those constructs of C that may result in unreliable
code. Finally, the SPARK specification and its supporting
tools are freely available (at least for the development of free
and academic software). The MISRA-C specification must be
purchased from the MISRA organization and freely available
tools for the verification of MISRA-C code are less mature
than those for SPARK.

The latest release of SPARK, 2014, and its supporting
tools offer a unique approach to verification by combining
static analysis and testing [2]. The GNATprove tool2 checks
conformance of the Ada source code with SPARK restric-
tions and generates a verification condition for each operation
that may potentially result in a run-time error, an exception or
a violation of an explicit assertion. Verification conditions are
expressed in the language of the Why3 deductive verification
platform [3]. They are discharged using one of several
automatic provers and interactive proof assistants supported
by Why3. The Ada compiler can automatically inject tests
for both explicit assertions and run-time errors (such as array
out-of-bounds accesses) into executable code.

In the following subsections we discuss which features
of three open-source implementations of robot navigation
algorithms, all implemented in C/C++, make them difficult
to verify. We explain how we re-implemented and verified
the same algorithms in SPARK. We analyzed code for
VFH+ (Vector Field Histogram) [4], ND (Nearness Diagram)
navigation [5] and SND (Smooth Nearness-Diagram) naviga-
tion [6] algorithms. This code is a part of the Player/Stage en-
vironment for mobile robot programming [7], which, before
ROS [8], was a de-facto standard software platform in the
mobile robotics research community. Our selection of code is
not meant to be exhaustive and we intentionally do not focus
on recently published software; rather, we are interested in
exposing weaknesses in stable code that is supposed to be
well-tested.

A. Annotations and pointers

A modular approach to software verification relies on
explicit contracts, such as pre- and postconditions, that
describe external interfaces of subprograms. For C code
these contracts are typically expressed using annotations in
ACSL (ANSI/ISO C Specification Language) [9]; no such
annotations language exists for C++.

In practice, even simple C code requires relatively com-
plex annotations. For example, a function from the VFH+
code that constrains a numerical value x to the interval
〈min;max〉 requires a number annotations to be placed in
comments above the function’s declaration:3

/* @requires min <= max
@ensures min <= *x && *x <= max
@requires \valid(x) &&

\unrelated(x, &min) &&
\unrelated(x, &max)

2GNAT is a free-software Ada compiler and names of several tools related
to Ada are prefixed with GNAT.

3For the reader’s convenience we translated the function name from
Spanish.

@modifies *x
*/
void ApplyLimits(float *x, float min, float max);

The essential information about this function, i.e. the re-
lationship between the values of its arguments and result,
is captured by the first two annotations; the other two
annotations may seem superfluous, but are necessary. They
specify that: the x pointer must not be NULL, must not
alias other parameters, i.e. min and max4, and that the value
pointed to by x will be modified.

In SPARK, pointers (or access types in the Ada termin-
ology) are forbidden and functions must be side-effect free,
i.e. must not update their parameters nor global variables.
SPARK procedures (which are equivalent to C/C++ void
functions) are allowed to modify their parameters, but data
that they modify must not be aliased. This greatly reduces
the number of explicit annotations required to specify the ex-
ternally visible behaviour of subprograms—only the essential
information needs to be expressed explicitly. For example, in
SPARK the same subprogram is declared as shown below.
procedure ApplyLimits(x : in out Float;

min, max : in Float)
with
Pre => min <= max,
Post => min <= x and then x <= max;

B. Arrays and vector containers

Arrays in the robot navigation code primarily store fixed-
size input data, e.g. sequences of sensor readings; vectors,
on the other hand, primarily store intermediate results,
e.g. sequences of obstacle-free regions around the robot.
Accesses to array elements are cumbersome to verify in
C, where array variables may lack information about their
size. Another problem occurs if pointer arithmetic is used
to access elements of C arrays (this was the case for the
VFH+ code that we analyzed). Vectors, which are part of
the C++ standard library, must be verified for accesses to
non-existing elements and for not increasing their capacity at
run-time, which may involve memory allocation. In practice,
verification of array accesses in C requires even more verbose
and complicated annotations than those already presented.
For C++ vectors we found no tool that statically verifies that
no memory allocation will occur at run-time.

In SPARK, arrays do carry information about their di-
mensions and so verification of array accesses requires no
additional annotations. For sequences of data that vary in size
we use formal containers—a SPARK library of generic data
structures similar to the Standard Template Library (STL) of
C++, but adapted to critical software development [10]. This
library has been fully formalized, which makes it possible to
be used in the verification process.

4Similar information can be expressed using restricted references—a non-
standard C++ extension, which allows compilers to generate more efficient
executable code.



C. Numbers
Arithmetic errors, e.g. overflows, seem to be rare in robot

navigation code, but are still unsafe should they occur. C
and C++ offer very little protection against them. The typical
solution involves the use of external libraries for integer
arithmetic and explicit checks of results of floating-point
operations [11]. In SPARK, arithmetic operations can be
verified both statically and dynamically—by run-time checks
automatically injected by the Ada compiler.

In practice, verification requires numeric variables to be
annotated with ranges that constrains their values, e.g. to
non-negative or positive numbers. In SPARK, numeric ranges
can be easily defined using subtypes. For integers, we used
only the standard-defined subtypes, i.e. Positive and
Natural, which range respectively from 0 and 1 to the
upper bound of the underlying Integer type. For floating-
point data, we created our own subtypes. For example, non-
negative numbers are represented by the following subtype,
which ranges from 0.0 to the upper bound of the underlying
Float data type.
subtype Non_Negative is Float

range 0.0 .. Float’Last;

D. Mathematical functions
Robot navigation algorithms are typically based on geo-

metric relationships between data, e.g. distances between
points or angles between vectors. In C/C++, these rela-
tionships are calculated using functions from the standard
mathematical library, e.g. sqrt() or atan2(). Most pro-
grammers do not routinely test for domain errors that may
occur when calling such functions.

In SPARK, we use mathematical functions from the Ada
standard library, which raise exceptions when domain errors
occur. For static analysis, we created a wrapper package (an
equivalent of namespace in C++) with mathematical functions
annotated with preconditions that specify their domain, as
defined in the Ada reference manual. To verify assertions
about the code that rely on the properties of mathematical
functions, we map each such function to its counterpart in the
real-number theory. We use external axiomatization, which
is a technique originally developed for the formal containers
library [10], and verify the code based on mathematical
axioms already known to theorem provers.

E. Threading and dynamic memory allocation
In robotics, algorithmic C/C++ code is often interweaved

with calls to a threading library. This makes proving and
debugging of such code much more difficult. SPARK simply
forbids the use of concurrency and synchronization features
of Ada; they are only allowed outside the clearly defined
boundaries of purely algorithmic code.

Similarly, SPARK forbids the use of dynamic memory
allocation, thus guarantees that no garbage collection, no
memory leaks and no memory allocation errors will occur
at run-time. Recursive calls, which are permitted in SPARK
but may result in stack-overflow errors, are detected using
GNATcheck—a tool for checking Ada coding standards.

TABLE I
CODE STATISTICS FOR C/C++ AND ADA IMPLEMENTATIONS (IN SLOC)

Driver Algorithm
C++ C/C++ Ada

VFH+ 807 782 918
ND 828 1037 1426

SND 403 941 1183

Total 2038 2760 3527

F. Uninitialized data and undefined behaviours

Uninitialized variables in code may result in unpredictable
robot operation and should be handled with the same care
as other errors. Some C/C++ compilers, notably GCC, may
warn about uninitialized data, but those checks are disabled
in default compilation settings and limited in scope to
local variables. In contrast, SPARK tools perform data-flow
verification by default, including accesses to uninitialized
global variables and individual components of record data.

Finally, many constructs in C/C++ code result in undefined
or implementation-defined behaviour, i.e. their results depend
on a compiler and not on the language definition. SPARK
excludes all ambiguous constructs of Ada. This ensures
that the program results are independent of the compiler or
optimization settings. (Yet, some settings, such as precision
of floating-point arithmetic, are platform-specific in SPARK.)

III. VERIFICATION

We have analyzed three open-source implementations of
robot navigation algorithms. The algorithms process range
data from an on-board sensor (typically a laser range-finder
or an array of sonars) and produce translational and rotational
velocity commands for the robot. Each implementation con-
sists of several hundreds of source lines of code (SLOC)
in C/C++. They are split between “driver” parts, which
integrate the algorithms with the robot control framework,
and “algorithm” parts, which process range data into velocity
commands (Table I).

We manually translated the “algorithm” code to the
SPARK subset of Ada and integrated it with the original
“driver” code in C++. In many aspects C/C++ is very similar
to Ada and the translation process for a large part of the
code was straightforward. However, attention was required
in those places where the languages differ; for example, there
is no continue statement in Ada. On average our SPARK
code is about 30% longer than the original C++ code (Table I).
This is mainly because Ada has more verbose syntax, as
it was designed to be more readable than other languages.
Interfacing of code in Ada and C/C++ is part of the Ada
standard and is well-supported by Ada compilers. In our
setup, the Ada code is compiled into libraries and simply
linked with the original “driver” code in C++.

We translated all pointers in C/C++ subprogram declara-
tions to Ada parameter modes: const pointers to in, and
other pointers to out or in out (depending on whether
the pointed location was only written to or also read). The



ND code uses pointers and pointer arithmetic to access array
elements; our implementation relies solely on array indices
for this purpose. During the translation it became evident
which parts of the original C/C++ code involve dynamic
memory allocations at run-time. For example, the SND code
allocates memory to store optional, intermediate results:
it calls the new operator if the algorithm detects a safe
passage towards the goal location. We translated this code
using discriminated records—a native Ada data structure that
stores values of one of several, possibly empty, fixed data
types, and does not involve dynamic memory allocation.5

Vector data types in SPARK must explicitly specify their
maximal capacity. In all of the analyzed code, vectors are
accessed from within loops, so the maximal numbers of their
elements can be determined from the ranges of the loop
variables. In the VFH+ code some of the vectors are fixed in
size, but they contain other vectors as elements. We translated
these to multi-dimensional arrays, which are a native data
structure in Ada.

The original SND code implements the “algorithm” part
as a separate thread that communicates with the “driver” part
using mutexes and condition variables. In our translation we
refactored this code and entirely removed the need for inter-
thread synchronization.

A. Run-time verification

After translation, the Ada code was compiled with all run-
time checks enabled and validated using standard naviga-
tion scenarios from the Stage simulation environment. This
already resulted in few run-time errors, most of which were
related to calling mathematical functions with arguments out
of their domains. Interestingly, in the VFH+ implementation
these errors do not propagate to the final velocity commands,
but—after a sequence of comparisons—affect only the in-
ternal operation of the algorithm. In the SND implementa-
tion, the relative distance to goal location is calculated using
polar coordinates and ignoring the angular component of
the result. It becomes a NaN, or not a number, each time
when the robot reaches the goal (the origin of the coordinate
system has no unique representation in polar coordinates).
This also did not affect the final results, but such code,
while “safe” in a sense, is quite difficult to understand. The
meaning of program variables can be explained only by
taking into account the details of floating-point arithmetic.

In the VFH+ code the run-time checks injected by the
Ada compiler revealed also that every initialization of the
algorithm involves accessing an array element at index -1.
In C/C++ this error does not result in a run-time error, so
probably the accessed memory contains some other data used
by the same process.

B. Static analysis

To prove that no run-time error will ever occur when using
robot navigation code we applied the static analysis tool
GNATprove, which relies on deductive reasoning and the

5In C++, a similar, but less flexible data structure is provided by the
boost::optional library.

weakest-preconditions calculus rather than on testing [12].
In this approach, the information required for proofs needs
to be propagated across the subprogram boundaries. For
example, if a function uses its argument as a divisor then
it needs to specify that this argument must be non-zero.
Such information is typically expressed using explicit pre-
and postconditions, but by using subtypes the code becomes
more readable. In fact, we captured most of the required
information using types that constrains the ranges of numeric
variables.

Loop invariants, i.e. conditions that hold during loop
executions, are well-known to be difficult to formulate when
used to capture the state of the program variables at the loop
exit. They turned out to be relatively easy to devise or even
unnecessary when used only to prove the run-time safety of
the loop bodies.

In several places we avoided explicit annotations (or
substantially reduced their complexity) by refactoring the
translated SPARK code. For example, the SND code in
C++ searches for a pair of elements in a vector using two
indices that are initially set to -1; clearly, either both of
these indices must be -1 (if no pair has been found yet)
or both must point to valid vector elements. In SPARK we
use a discriminated record that either is empty or contains
a pair of valid vector indices. In general, it is possible to
prove that such refactorings for verification (and the C++

to SPARK translation itself) preserve the semantics of the
original code [13], but this was not the aim of our case study.

In other places extra annotations were inserted and the
code was refactored to speed up the verification process.
For example, code preceded by several (possibly nested)
if-then-else statements can be time-consuming to
prove, because all the possible paths that lead to its exe-
cution must be analyzed. We cut such code into sections
using Assert and Cut annotations, which replace the
exact knowledge about the state of program variables with
expressions that carry only enough information to prove the
subsequent code. Several parts of the code were refactored as
nested procedures (available only as an extension to C/C++)
with parameters of the mode in to indicate the data that are
only accessed and not modified.6

SPARK tools are designed to prove only partial correct-
ness, i.e. properties of a program’s results at the program
exit. The total correctness, which requires the program to
also terminate, can be verified by prohibiting recursive calls,
using for loops where possible (in Ada they require fixed
bounds thus are guaranteed to terminate) and annotating the
remaining while loops with loop variants (non-negative
integer expressions whose values monotonically decrease
with each loop iteration).

IV. RESULTS

We compared the performance of our implementations in
SPARK with the original C/C++ code by averaging the time of

6Similar effect can be achieved using ghost variables, i.e. variables
introduced only for the purpose of verification, but they are not yet supported
by the SPARK tools.

http://www.boost.org/doc/libs/release/libs/optional/


TABLE II
AVERAGE TIMES OF SINGLE ITERATIONS OF THE ALGORITHMS IN µs

AND RELATIVE PERFORMANCE OF THE IMPLEMENTATIONS IN SPARK

C/C++ SPARK

Run-time checks No Yes No No
Math library C Ada Ada C

VFH+ 646 2567 (4.0) 892 (1.4) 861 (1.3)
ND 83 318 (3.8) 174 (2.1) 85 (1.0)

SND 165 752 (4.6) 493 (3.0) 449 (2.7)

iterations of the algorithms in typical navigation scenarios7.
All results have been measured using a desktop PC with
Intel Core i5-3230M 2.6 GHz CPU, 8GB RAM and 64-
bit Ubuntu 12.04 Linux operating system. Both the SPARK
and C/C++ code has been compiled with the GNAT GPL
2013 compiler, which is based on GCC 4.7.4, with “-O3”
optimization settings.

In the worst case, a single iteration of the VFH+ algorithm
took 2.6 ms, but the other algorithms can be executed at
much higher update rates even with all run-time checks
enabled (Table II). Heavy use of arrays and run-time asser-
tions in VFH+ algorithm makes it up to four times slower
than the original C++ code. The ND algorithm with run-
time checks disabled performs even better in SPARK, but
only when compiled with the C mathematical library, which
implements many of its functions in software. Ada compiler
uses the hardware floating-point unit for trigonometric func-
tions, which is slower, but gives more accurate results (this
accuracy is mandated by the Ada standard). The hot spots
in the performance of the SND algorithm are the operations
on vectors. The API of the SPARK formal containers library
prevents the compiler from optimizing the code as effectively
as for the C++ standard template library.

The explicit annotations for each of the analyzed imple-
mentations take less than 5% of the code, but complete
proofs involve hundreds of verification conditions (Table III).
GNATprove’s effectiveness builds upon the use of Satisfi-
ability Modulo Theories (SMT) solvers, which automatically
decide whether a given verification condition holds in all
configurations of the program variables [3]. We evaluated
several SMT solvers supported by the Why3 platform and
get the best results with Alt-Ergo (the default solver shipped
with SPARK tools) and Z3 (Table IV).

The exact ranges and accuracy of floating-point values can
be easily defined only for sensor data. Manual propagation
of this information through the code to each intermediate
result is difficult and error-prone. Without such information,
SMT solvers typically reach a timeout limit when attempting
to verify floating-point operations. To speed up the static
analysis we skipped such proofs and (optimistically) assumed
that floating-point operations are exact and do not overflow.

Trigonometric functions pose another difficulty, as SMT

7The verified SPARK code and both the original and fixed
C/C++ implementations, together with detailed instructions for repro-
ducing our results, are available at http://github.com/ptroja/
spark-navigation.

TABLE IV
NUMBER OF DISCHARGED VERIFICATION CONDITIONS

AND THE RUNNING TIME OF STATIC ANALYSIS

Alt-Ergo Z3 Alt-Ergo & Z3 Total
0.96 4.3.1 combined

VFH+ 633 699 701 748
11 min 37 min 48 min

ND 462 482 483 540
17 min 21 min 41 min

SND 350 366 366 375
29 min 6 min 36 min

solvers do not handle them natively, but using generic
procedures and a limited set of axioms. Surprisingly, we got
better results by excluding some axioms from the default set,
in particular those that define values of sin and cos for 0, π
and π

2 . Solvers that handle trigonometric functions natively
might be more effective in our application if they were not
limited only to the theory of real-number arithmetic [14].
Verification conditions resulting from our code are typically
“polluted” with other theories, such as integers.

A. VFH+

Part of the 6% of unproved verification conditions in the
VFH+ implementation result from several assertions that we
put as substitutes of a single type invariant. Type invariants
are not yet supported by the current release of the SPARK
tools. The remaining proofs depend on missing assumptions
about the relationships between algorithm parameters. Their
discovery requires further investigation and, ideally, a tool
support for type invariants.

B. ND

The ND algorithm is implemented in C using a program-
ming style that is particularly difficult to verify. For example,
invalid array indices are indicated as -1 and code with
several branches is put into a 200-lines long loop body. Other
parts of the code directly call trigonometric functions instead
of referring to geometric primitives such as points and angles.

Despite the disputable coding style of this algorithm, it
was the only for which our experiments did not revealed
any run-time error. Almost 90% of the verification conditions
are proved. The remaining ones results from code with
particularly high complexity metrics. Their proofs depend
on invariants, which discovery requires further investigation.

C. SND

The SND algorithm is based on the ND algorithm, but the
implementations differ substantially. The C++ code of SND
is shorter and easier to understand than the code of ND.
It uses vectors and cursors instead of arrays and pointers.
Subprograms related to geometric concepts, i.e. positions,
angles and poses, are encapsulated within a library and not
mixed with the main code.

The clarity of the SND code turns out to be essential
for proving its run-time safety: 97% of the verification
conditions are proved automatically and the remaining ones

http://github.com/ptroja/spark-navigation
http://github.com/ptroja/spark-navigation


TABLE III
VERIFICATION CONDITIONS BY CATEGORY

Explicit annotations Implicit run-time checks Total

Pre- Post- Loop Loop Assertions Divisions Integer Floating-point Subtype Array Record
conditions* conditions invariants* variants overflows overflows ranges indices discriminants

VFH+ 46 (3) 5 18 (9) 0 23 36 36 120 100 102 262 748
ND 83 (18) 10 8 (4) 2 3 54 23 254 53 50 0 540

SND 104 (9) 9 14 (7) 2 30 29 1 140 22 0 24 375
* Separate verification conditions are generated for each call to subprogram with precondition, and similarly for initialization and preservation of each

loop invariant; the numbers of explicit annotations are given in brackets.

are easy to examine. Two are related to normalizing angles
to intervals of the width 2π and require formalization of the
floating-point remainder function. Another two are related to
explicit assumptions about bounded vectors and are required
by the current release of the formal containers library.

Two unproved assertions reveal hidden assumptions of
the authors of the code about the relationships between
algorithm parameters. Finally, three verification conditions
require reasoning about the relationships between trigono-
metric functions. We checked them by pen and paper, but
this can also be done more formally using an interactive
theorem prover.

In addition to run-time safety, termination of the VFH+
and SND algorithms is verified by proving loop variants for
all of the while loops in their code.

V. RELATED WORK

Before translating the analyzed code to SPARK we at-
tempted to verify it using several state-of-the-art tools for
C/C++. To avoid the complexity of parsing C++ source code,
the majority of tools, e.g. CBMC8 and KLEE9, operate on
intermediate compiler representation of the code, which lacks
much of the information needed for the proofs. The notable
exceptions are Frama-C10 and VCC11, which follow the
same approach for C as GNATprove for SPARK, but do not
support C++. According to our experiments, none of these
tools is suitable for automated verification of “real-world”
robot control software, at least not without substantial effort
in annotating the source code.

SPARK is used in diverse applications including avion-
ics, security and medical systems, but—to the best of our
knowledge—it has not been yet used for verification of robot
navigation software. In particular, we heavily rely on the
features that have been introduced in the latest SPARK 2014
release of the language, such as the formal containers library.

Existing proofs of robot navigation algorithms, such as
the popular dynamic-window approach, verify only their
functional properties and not their implementations [15]. Our
approach is most closely related to verification of software
that prevents a mobile robot from colliding with static
obstacles [16]. The authors developed a custom tool for static

8http://www.cprover.org/cbmc/
9http://ccadar.github.io/klee/
10http://frama-c.com/
11http://vcc.codeplex.com/

analysis of MISRA-C code and verified both their algorithm
and its implementation. They relied solely on an interactive
theorem prover—a tool that is very difficult to use by non-
experts. In contrast, Ada and SPARK are quite similar to C++

and thus are much more straightforward to adopt.

VI. CONCLUSIONS

Software verification is traditionally perceived as expens-
ive and difficult to apply to “real-world” code. We demon-
strated that this is not the case for robot navigation software,
provided that it is implemented in a programming language
designed with software-reliability in mind. We believe that
the effort of learning and using a dedicated programming
language is a justifiable investment for all those who are
concerned about the possible disastrous effects of bugs in
their code. Run-time assertions automatically injected by
the Ada compiler and advanced tools for static analysis of
SPARK code make detecting bugs and proving their absence
much easier than what is currently possible with C/C++.

Directions for future work include verification of path-
planning code and integrating SPARK with ROS [8].
Floating-point operations in our code can still result in
overflow errors at run-time. We plan to apply complementary
techniques, such as abstract interpretation, to prove their
correctness. We are also interested in extending the scope
of verification to multi-threaded software and using the
RavenSPARK subset of Ada—a combination of SPARK and
a restricted concurrency profile of Ada [17]. By publishing
our results and code online we hope to encourage uptake by
robot software developers, and that their future code releases
will be accompanied with evidence of code correctness.

ACKNOWLEDGEMENT

We would like to thank Claire Dross for support in getting
the formal containers library to work, the SPARK developers
for their excellent tools, and the authors of the original
C/C++ implementations for releasing their code online thus
making our analysis possible.

REFERENCES

[1] J. Barnes, SPARK: The Proven Approach to High Integrity Software.
Altran Praxis, 2012.

[2] C. Comar, J. Kanig, and Y. Moy, “Integrating formal program verifica-
tion with testing,” in Proceedings of the Embedded Real Time Software
and Systems conference, ERTS2 2012, Toulouse, Feb. 2012.

http://www.cprover.org/cbmc/
http://ccadar.github.io/klee/
http://frama-c.com/
http://vcc.codeplex.com/


[3] J.-C. Filliâtre and A. Paskevich, “Why3 — where programs meet
provers,” in Proceedings of the 22nd European Symposium on Pro-
gramming, ser. Lecture Notes in Computer Science, M. Felleisen and
P. Gardner, Eds., vol. 7792. Springer, Mar. 2013, pp. 125–128.

[4] J. Borenstein and Y. Koren, “The vector field histogram-fast obstacle
avoidance for mobile robots,” IEEE Transactions on Robotics and
Automation, vol. 7, no. 3, pp. 278–288, 1991.

[5] J. Minguez and L. Montano, “Nearness diagram (ND) navigation:
Collision avoidance in troublesome scenarios,” IEEE Transactions on
Robotics and Automation, vol. 20, no. 1, pp. 45–59, 2004.

[6] J. W. Durham and F. Bullo, “Smooth nearness-diagram navigation,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2008, pp. 690–695.

[7] G. Biggs, R. B. Rusu, T. Collett, B. Gerkey, and R. Vaughan, “All the
robots merely players: History of Player and Stage software,” Robotics
Automation Magazine, IEEE, vol. 20, no. 3, pp. 82–90, 2013.

[8] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Ber-
ger, R. Wheeler, and A. Ng, “ROS: an open-source Robot Operating
System,” in Proceedings of the Open-Source Software workshop at the
International Conference on Robotics and Automation, 2009.

[9] P. Baudin, P. Cuoq, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy,
and V. Prevosto, “ACSL: ANSI/ISO C specification language,” CEA
LIST and INRIA, Tech. Rep. Revision 1.7, 2013.

[10] C. Dross, J.-C. Filliâtre, and Y. Moy, “Correct code containing con-

tainers,” in Tests and Proofs, ser. Lecture Notes in Computer Science,
M. Gogolla and B. Wolff, Eds. Springer, 2011, vol. 6706, pp. 102–
118.

[11] R. C. Seacord, Secure Coding in C and C++, 2nd ed. Addison-
Wesley Professional, Apr. 2013, ch. Integer Security.

[12] E. W. Dijkstra, A Discipline of Programming. Prentice Hall, 1976.
[13] X. Yin, J. C. Knight, E. A. Nguyen, and W. Weimer, “Formal

verification by reverse synthesis,” in Computer Safety, Reliability, and
Security, ser. Lecture Notes in Computer Science, M. D. Harrison and
M.-A. Sujan, Eds. Springer Berlin Heidelberg, 2008, vol. 5219, pp.
305–319.

[14] B. Akbarpour and L. C. Paulson, “Metitarski: An automatic theorem
prover for real-valued special functions,” Journal of Automated Rea-
soning, vol. 44, no. 3, pp. 175–205, 2010.

[15] S. Mitsch, K. Ghorbal, and A. Platzer, “On provably safe obstacle
avoidance for autonomous robotic ground vehicles,” in Robotics:
Science and Systems, 2013.

[16] H. Täubig, U. Frese, C. Hertzberg, C. Lüth, S. Mohr, E. Vorobev, and
D. Walter, “Guaranteeing functional safety: design for provability and
computer-aided verification,” Autonomous Robots, vol. 32, pp. 303–
331, 2012.

[17] A. Burns, B. Dobbing, and T. Vardanega, “Guide for the use of the
Ada Ravenscar Profile in high integrity systems,” ACM SIGAda Ada

Letters, vol. 24, no. 2, pp. 1–74, 2004.


	INTRODUCTION
	SPARK AND ROBOT NAVIGATION CODE
	Annotations and pointers
	Arrays and vector containers
	Numbers
	Mathematical functions
	Threading and dynamic memory allocation
	Uninitialized data and undefined behaviours

	VERIFICATION
	Run-time verification
	Static analysis

	RESULTS
	VFH+
	ND
	SND

	RELATED WORK
	CONCLUSIONS
	References

