
FOSDEM 2015
What’s new in GNAT GPL 2014 ?

Tristan Gingold
Presented by



Agenda
• GNAT GPL 2014 

• Bareboard runtimes 

• Ravenscar profile (technical) 

• Boards 

• Using and porting guide (technical) 

• Demos



What is GNAT GPL ?
• GNAT compiler, based on gcc sources + AdaCore patches 

• + IDE (gps), builder, ASIS tools… 

• Released every year (June-ish) 

• Many add-ons available: AWS, PolyORB, ASIS, GNATbench, AJIS, 
Aunit, GNATcoll, GtkAda, XML/Ada, Florist, SPARK



 Targeted audience
• Academics: members of the GAP program. 

• Students 

• Free Software / Open Source developers 

The license of the GNAT GPL runtime is  GPL.  Software built with 
GNAT GPL and linked with its runtime must follow the GPL.



 GNAT GPL 2014
• New: includes SPARK 2014 

• New: GNAT GPL for Bare Board ARM



 SPARK 2014
Complete redesign: 

• Provable subset of Ada 2012 

• Use the GNAT front-end 

• WhyML as intermediate language (instead of FDL) 

• Use SMT solvers as automatic proof tools 

• Support for Isabelle, Coq, …



 SPARK 2014
• Uses Ada 2012 aspects for contracts (instead of special comments) 

• Sound IEEE-754 floating point support 

• Support of combination of test and proof 

• See http://spark-2014.org



GNAT Bare Board for ARM
• Targets ARM Cortex M and ARM Cortex R 

• Cortex A is not supported (often used with an OS) 

• Comes with IDE (gps), builder (gprbuild), debugger (gdb)… 

• … like other GNAT GPL ports



GNAT Bare Board for ARM
Runtimes: 

• ZFP – Zero FootPrint 

• Ravenscar-sfp 

• First GNAT GPL release with a ravenscar-sfp runtime



Bare Board: restricted runtimes
No full-runtimes: 

• No obvious storage for files 

• Reduced memory size 

• Reduced power



ZFP

• Almost the smallest possible runtime 

• System, Unchecked_Conversion, Machine_Code, Interfaces, … 

• Can build an application without code from the runtime. 

• Still include software engineering features: packages, generics, child 
units …



ZFP
Also includes (require code from the runtime): 

• Secondary stack 

• To return unconstrained types 

• Last chance handler 

• No exception propagation (but local handlers supported) 

• Library-level tagged types



Ravenscar
Ravenscar is a profile (subset) of the tasking 

For hard real-time applications 

For safety-critical applications 

Part of the Ada standard 

Efficient implementation, with small footprint



Ravenscar: tasking model
Not enforced, but 2 common patterns: 

• Cyclic / periodic tasks 

• Eg: compute position by reading sensors (speed, gyroscopes) 

• Reactive tasks 

• Run on events, generated by an interrupt or by another tasks



Ravenscar: tasking model
Inter-tasks communication only by protected objects 

• No rendez-vous 

No easy way to multiplex inputs 

• Eg: serial output driver for logs from multiple tasks



Ravenscar-sfp
Ravenscar small foot print 

• Runtime with ravenscar tasking 

• Based on ZFP for the sequential part 

• No underlying OS – designed for bareboards



Ravenscar-sfp
2 parts: 

• The tasking kernel (in system.bb) 

• The ‘usual’ runtime 

• Ada units defined in the ARM 

• Units to implement high-level Ada constructs



Ravenscar kernel
• Scheduler 

• Follow Ravenscar semantic: FIFO within Priorities 

• Clock and Timer 

• For Ada.Real_Time.Clock and delay until 

• Interrupts 

• For clock, and Attach_Handler pragma (aspect)



Scheduler
Real-time scheduler 

• A task can be preempted by an higher priority task 

• Woken up by an interrupt or by the end of a delay 

• FIFO within priority: order is deterministic 

• Simplify (and make possible) schedule analysis 

• But prevent multiplexing



Scheduler
• The highest priority task runs until it is blocked: 

• Either by a delay statement 

• Or by calling an entry (of a protected object) whose barrier is false



Protected types
• No locks: not needed by Ravenscar 

• Exclusion achieved by Priority. 

• For multiprocessors: need a spin-lock 

• At most one entry per protected object 

• Entry queue length is 1 

• => Task to wake-up is known.



Exclusion In Protected types
• Ceiling Locking policy: 

• Within a protected object, the priority is raised to the priority of the 
object 

• Can only raise the priority (not decrease it) 

• Avoid priority inversion and deadlocks. 

• No blocking actions (delay, entries, …) allowed within a protected 
object



Exclusion In Protected types
Consequence: while a task is executing a protected object 

• its priority is >= than priority of all other potential callers 

• It cannot be blocked 

• Can only be pre-empted by tasks with higher priorities 

• These tasks cannot call the protected object 

=> Mutual exclusion



Interrupts
A protected procedure can be attached to an interrupt 

• Support of interrupts within the language ☺ 

• Easy way to connect to interrupts 

• Ceiling priority must be an interrupt priority 

• Interrupts at lower priority are masked within the protected object 

• Provide mutual exclusion



Board supported



Stm32f4-discovery

Power + Debug

stm32f407



Why stm32f4 ?
• Cheap and easily available:



Why stm32f4
Easy to use 

• Include a probe 

• Open tools to flash and debug the board: 

• st-util (https://github.com/texane/stlink) 

• Openocd (http://openocd.sourceforge.net) 

• Works with gdb!

https://github.com/texane/stlink
https://github.com/texane/stlink
http://openocd.sourceforge.net
http://openocd.sourceforge.net


Why stm32f4
• Very common 

• Cpu (cortex m4f) is a nice microcontroller 

• May devices included in the chip 

• USB, serial, gpio, timers, … 

• Lots of I/O on the discovery board



Building a program
Must use gprbuild: 
$ gprbuild --RTS=arm-eabi/ravenscar-sfp-stm32f4 --target=arm-eabi -Pleds.gpr

arm-eabi-gcc -c -fcallgraph-info=su,da -g leds.adb

gprbind leds.bexch

arm-eabi-gnatbind leds.ali

arm-eabi-gcc -c b__leds.adb

arm-eabi-gcc leds.o -o leds

A little bit heavy, but will be improved.



Building a program

gprbuild --RTS=arm-eabi/ravenscar-sfp-stm32f4 --target=arm-eabi -Pleds.gpr

User project file (required)

Target (also required)

Runtime path (not a name) 
Either absolute or search in install dir



Build sub-configuration
Build for RAM: 
gprbuild --RTS=arm-eabi/ravenscar-sfp-stm32f4 --target=arm-eabi 

-Pleds.gpr –XLOADER=RAM

Application will be loaded in RAM. 

Build for Flash: 
gprbuild --RTS=arm-eabi/ravenscar-sfp-stm32f4 --target=arm-eabi 

-Pleds.gpr –XLOADER=FLASH



Loading to the board
1. Start debug agent 
$ st-util

(On windows: from a CMD window) 
Could use openocd. 

2. Load with gdb 
$ arm-eabi-gdb leds

(gdb) target remote :4242

(gdb) load

(gdb) c



Loading to the board
Notes: 

• Reset the board before downloading 

• If program is loaded in FLASH, will stay after power-off



Other boards ???
There are many many many Cortex-M boards 

• We cannot provide runtimes for each board 

• We needed to start with one board 

• We tried to make porting easier



Runtime location
The runtime can be anywhere 

• You need to give its path to GPRbuild 

• Implicit search in the install directory 

Start by copying and renaming an existing runtime.



Runtime compilation
The runtime can be easily recompiled. 

$ gprbuild –P path/ravenscar-sfp-stm32f4 

The runtime comes with a project file 

You can recompile it with debug info, optimization off…



GCC flags
The runtime contains a configuration file: runtime.xml 

• Read by gprconfig 

• Contains compiler, binder and linker switches 

• Can specify switches like –mcpu=xxx, -msoft-float, … 

• No need to modify gcc spec files



Linker scripts
The runtime contains the linker scripts 

• Referenced by gprconfig 

• Describe memory map 

• May differ according to –XLOADER=



Starting code
Code executed from the reset vector 

• Copy initialized data from FLASH to RAM (if starting from FLASH) 

• Clear .bss 

• Enable the FPU 

• Setup PLL



Starting code
.data copy, enable FPU, clear .bss: 

• Code already written.  May require some adjustments if ported 

PLL setup: 

• Code highly device and board dependent 

• Usually very similar within a family. 

At this point, non-tasking program should work !



Cortex-M
Cortex-M is the arm v7 variant for micro-controllers 

Other variants: 

• Cortex-R: for real-time (not very common) 

• Cortex-A: for application (very common in smart phones)



Porting ravenscar runtime
For: 
• FPU or no FPU (eg: M4 vs M4F) 
• Speed 
• Number of interrupts 

Constants in System.BB.Parameters: 
   Clock_Frequency : constant := 168_000_000;

   Has_FPU : constant Boolean := True;
   --  Set to true if core has a FPU

   Number_Of_Interrupt_ID : constant := 85;



Ada.Interrupts.Names
Declare names of the interrupts 

• Not required (not used by the runtime) 

• Useful for users 

• Very device specific 

Priority is defined by the user (must be an interrupt priority) 

Tasks may not be at interrupt priority.



Publishing new Runtimes
AdaCore has already ported the ravenscar runtime 

• For Atmel SAM4SD32C (SAM4S Xplained Pro board) 

• For STM32F429I-DISCO



Public repository
AdaCore plan to create a Github repo 

• Not a commitment (currently only a plan) 

• Ravenscar runtime from GNAT GPL 

• Examples 

• Device drivers 

• Wiki



Public repository
Hobbyist can: 

• Fork the repo 

• Port the runtime to a new board or new cpu 

• Be referenced on the wiki 

• (No commitments yet)



Demo 1: Tetris

• Board: Atmel sam4s Xplained Pro 

• Application: a Tetris game 

• Runtime: ravenscar-sfp (for sam4sd32c) 

• Core written in Spark2014 and proven 

• See http://blog.adacore.com/tetris-in-spark-on-arm-cortex-m4



Move Left

Move Right

Rotate Reset
Drop

Atmel sam4s Xplained pro demo



 BSP + Drivers

Tetris SW Architecture
Main 

Tetris Leds Oleds Fonts 



 BSP + Drivers

Tetris SW Architecture
Main 

Tetris Leds Oleds Fonts 
Interrupt using a 
Ravenscar protected object 
(writing spots on screen)



 BSP + Drivers

Tetris SW Architecture
Main 

Tetris Leds Oleds Fonts Tetris 
Formally proven game logic 

using SPARK 2014



Demo 2: Railway Signaling

• Board: STM32F429I-DISCO 

• Application: Railway signaling simulation 

• Runtime: ravenscar-sfp (for stm32f429) + drivers 

• Signaling written in Spark2014 and proven



STM32F429 board demo



Railway Signaling

Train

Absolute block

Permissive block

Spawn station

Free block

Touch to switch



2048 (by students)



Gravity simulation


