
FORMAL VALIDATION OF AEROSPACE SOFTWARE

David LESENS (1), Yannick MOY (2), Johannes KANIG (2)
(1) Astrium Space Transportation, 51-61 route de Verneuil 78130 Les Mureaux France, david.lesens@astrium.eads.net

(2) AdaCore, 46 rue d’Amsterdam 75009 Paris France, <name>@adacore.com

ABSTRACT

Any single error in critical software can have
catastrophic consequences. Even though failures are
usually not advertised, some software bugs have
become famous, such as the error in the MIM-104
Patriot. For space systems, experience shows that
software errors are a serious concern: more than half of
all satellite failures from 2000 to 2003 involved
software.
To address this concern, this paper addresses the use of
formal verification of software developed in Ada.

1. INTRODUCTION

Software validation activities mandated for critical
software are essential to achieve the required level of
confidence. They are becoming increasingly difficult
and costly as, over time, they require the development
and maintenance of a large body of functional and
robustness tests on larger and more complex
applications. Testing and code review, the most widely
deployed techniques for software validation, suffer from
severe shortcomings. Indeed, both methods are very
time consuming and labour intensive processes. For
most critical systems, testing represents more than half
of the total development costs. And, despite this high
cost, it is impossible to discover all bugs with testing. In
short, as E. W. Dijsktra puts it: “Program testing can be
a very effective way to show the presence of bugs, but is
hopelessly inadequate for showing their absence.”

Formal program validation offers a way to reduce these
costs while providing stronger guarantees than testing.
Addressing validation activities with formal validation
is supported by upcoming standards such as DO-178C
for software development in avionics. The Hi-Lite
project has pursued the integration of formal validation
with testing for projects developed in Ada: formal
validation can be applied independently to subprograms
that fall in the SPARK subset of Ada, while testing can
be applied to all other subprograms. AdaCore and
Astrium Space Transportation have been working
together since 2010 to define the subset of Ada that can
be analyzed formally, and extensions to Ada that

facilitate specification and validation. AdaCore
developed tools for static and dynamic validation that
programs implement their specification. Astrium has
applied these tools to various case studies from the
space domain.

This paper provides the details of the chosen formal
validation approach and its application results.

2. ADA PROGRAMS FORMAL VALIDATION

SPARK [2] is a subset of Ada augmented with special
annotations (in stylized comments) to specify the
expected functional behaviour of the program. Among
these annotations, “Subprogram contracts” are the most
important, specifying both in which context a
subprogram is called (its precondition) and the expected
outcome of the subprogram (its postcondition). These
specifications can be either partial or total. A set of tools
allows the formal validation that a program implements
its specification, and that it cannot raise a run-time error
when executed (no uninitialized read, no out-of-bounds
array access, zero divide, etc.). These validations are
done independently for each subprogram, by using the
contract (both precondition and postcondition) of a
subprogram at each calling points in the main program.

In the Hi-Lite project, we have redefined a new version
of the SPARK language, where all annotations are now
taken from Ada itself. This was made possible because
the new version of Ada issued in 2012 includes
specification features, such as preconditions and
postconditions, as well as a richer expression language
to use in contracts.

In the example below, one can specify that a function
Find only applies to pairs of a Table and a Value where
the Value appears in the Table (see the precondition
below), and that it then returns the first such index (see
the postcondition below). This contract uses the new
quantified expressions that allow expressing the usual
mathematical quantifications over a finite range:
existential quantification introduced by for some and
universal quantification introduced by for all. The result

of the function is designated by Find’Result in the
postcondition.

 function Find (Table : MyArray; Value : T1) return T2
 with
 Pre => (for some Index in Table’Range =>
 Table (Index) = Value),
 Post => Table (Find’Result) = Value and then
 (for all Index in Table’First .. Find’Result - 1 =>
 Table (Index) /= Value);

Ada defines other language aspects, pragmas and
attributes to facilitate the expression of specifications.
The Ada Reference Manual precisely defines the
meaning of these features in terms of execution. For
example, a for all quantification executes as a loop, and
returns the result True if the expression evaluated is
True for all values in the range, or else it returns the
result False as soon as one evaluation of the expression
is False. The precondition (resp. the postcondition)
evaluates as an assertion that raises an error at run time
if the expression evaluates to False on subprogram entry
(resp. subprogram exit).

The new version of SPARK comprises most of Ada,
only excluding features that make it notably more
difficult to specify programs, or to prove them
automatically. The most notable restrictions are:
● The use of access types and allocators is not

permitted.
● All expressions (including function calls) are free

of side-effects.
● Aliasing of names is not permitted.
● The goto statement is not permitted.
● The use of controlled types is not permitted.
● Tasking is not currently permitted (it is intended

that this will be included in a future version of the
SPARK language).

● Raising and handling of exceptions is not permitted
(exceptions can be included in a program but proof
must be used to show that they cannot be raised;
these restrictions may also be relaxed in a future
version of the language).

We have defined additional language constructs
(aspects, pragmas and attributes) in SPARK to further
facilitate formal specification and validation, in
particular for:

● Specification of subprogram data dependences (the
globals annotation in SPARK 2005). The following
example declaration specifies that the procedure
reads and writes the global array Table:

procedure Update_Index (I : Index)
 with Global => (In_Out => Table);

● Specification of subprogram data flows (the derives
annotation in SPARK 2005). The following
example declaration specifies that the new value of
parameter X depends on the value of Y only:

procedure P (X : in out Integer; Y, Z : Integer)
 with Depends => (X => Y);

● specification of contracts by disjoint cases
● proof of subprogram with loops (loop invariants)
● proof of loop termination (loop variants)

Constructs for specifying the functional behaviour of a
program are defined in terms of execution. For example,
the failure to respect a loop invariant or variant leads to
a run-time exception during execution. Constructs for
specifying data dependences and flows are defined in
terms of validation only.

The tool GNATprove [3] developed in the context of
project Hi-Lite aims at providing for this new version of
SPARK the same functionality provided by the
validation tools for SPARK 2005. The main differences
between the two versions of the technology are that:
● GNATprove interprets annotations (like

preconditions and postconditions) in exactly the
same way as they are interpreted during execution.
In particular, GNATprove needs to prove that
expressions cannot raise run-time errors when
evaluated.

● GNATprove can be applied on units that do not fall
completely in the SPARK subset. In that case, it
ignores the part of the unit that are not SPARK
compliant.

The fact that specifications have the same meaning in
proofs and during execution is very useful for
debugging specifications: a run-time failure during
testing might reveal that a precondition is wrong, and
then classical debugging can be used to understand the
failure. This perfect match between dynamic and static
interpretation of specifications is also the basis for the

combination of formal validation and testing. This
allows discharging by testing the assumptions made
during formal validation, when a program is only
partially proved. These assumptions may be both
contracts written by the user (preconditions and
postconditions) that need to be exercised during testing,
or implicit contracts added by the proof tools
concerning initialization of subprogram inputs/outputs
and non-aliasing properties. Under special switches, the
GNAT compiler inserts the corresponding checks for
these implicit contracts, so that they can too be verified
dynamically during testing.

3. AEROSPACE CASE STUDY

3.1 Objectives of the case study

In 2011, the “Full Model Driven Development for On-
Board Software” project (co-funded by ESA, Astrium
Space Transportation, Esterel Technologies, IRIT,
Altran Praxis and Verimag) has experimented the use of
formal methods for the development of space software.
The automatic generation of Ada code and the use of
SPARK 2005 were specifically analysed on a case study
developed by Astrium Space Transportation with the
following results:
● A certifiable automated code generator from

SCADE Suite models to SPARK 2005 code has
been developed and is now commercialized by
Esterel Technologies.

● The ability to develop highly critical software in
SPARK 2005 was assessed. On the one hand, it
allowed Astrium Space Transportation to efficiently
develop a case study which was exhaustively
proved to be free of run-time errors. On the other
hand, the following drawbacks were identified:
○ The restrictions imposed by SPARK 2005 lead

to non negligible overcost and restrict its scope
of use.

○ Software engineers may accept only with great
difficulties these constraints, even after an
adequate training.

○ The formal proof activity needs to be
performed independently from the classical test
activity (due to the fact that the SPARK 2005
contracts are not executable).

○ The use of the interactive proof tool of the
SPARK suite is highly complex and expensive.

The Hi-Lite approach has been assessed with the
objectives to keep the benefits of SPARK 2005
(detection of potentially dangerous code and formal

exhaustive proof) and at the same time to extend its
scope and to facilitate its use.

3.2 Description of the case study

The case study developed by Astrium Space
Transportation implements a prototype of a generic
OBCP (On-Board Control Procedure) engine following
the principles specified in the ECSS-E-ST-70-01C
(“Spacecraft on-board control procedures” – 16 April
2010). This standard defines the general principles of a
Mission and Vehicle Management functionality. An on-
board control procedure is in practice represented by a
simplified programming language interpreted onboard
the spacecraft. This interpreter is generally at the
highest level of criticality of the spacecraft. Our
implementation of this interpreter in SPARK is table
driven and relies greatly on Ada generic programming.

The OBCP language contains the following features:
● Mathematical expressions
● Events detection with a notion of timed window
● Automated procedures to implement change of

modes
● OBCP procedures with complex control (if-then-

else, jump, loop, sub-procedures, etc.)

The developers of the case study have taken care to:
● Use only strict variable types approach: For each

variable, a range of accepted value has been
defined.

● Avoid as far as possible any of the constructs
forbidden by Hi-Lite, for instance pointers.

● Strictly define for every single subprogram a set of
test cases and a formal contract (see section 2).

● Use advanced constructs of Ada 2012 in order to
assess the Hi-Lite scope:
○ Generic packages: This will allow making the

OBCP engine generic enough to be used on a
launcher such as Ariane 6 or a spacecraft such
as the MPCV.

○ Object Oriented design: This feature also
increases the genericity of the software,
making its customization to a specific launcher
or spacecraft easy and safe.

○ Expression functions offering a convenient
way to express simple functions.

○ Conditional expressions providing a compact
and more readable notation.

○ Quantified expressions, used in particular in
contracts.

The following subprogram is an example of expression
function using a quantified expression:

function G (X : T_Record) return Boolean is
 (for all I in X.A'Range => X.A (I));

This implementation of a reusable Mission and Vehicle
Management relies also greatly on
● Generic packages
● Discriminant

The generic packages allow an easy customization of
the code:

 generic type T_Event_Id is (<>);-- the list of events
 package Mvm.Events is …

The discriminants ensure a strict typing of the code,
even in case of heterogeneous communication between
components of the system:

 type T_Monitoring is (No_Window, Time_Window,
 Protected_Window);

 type T_Event_Status
 (Monitoring_Type : T_Monitoring := No_Window)
 is record
 Detection_Time : T_Float32;
 case Type_Of_Monitoring is
 when No_Window =>null;
 when Time_Window Protected_Window =>
 Start_Window : T_Float32;
 End_Window : T_Float32;
 end case;
 end record;

3.3 Results of the formal proof activity

All the contracts have been checked by dynamic testing.
This phase is quite classical, except for the fact that the
testing includes the preconditions and the postconditions
defined in the case study. Then, GNATprove has been
applied.

This case study contains 10 parts which results are
detailed in the following sections. For each part, the
duration of the analysis is provided. Then, a first table
shows the number of subprograms in SPARK, not in

SPARK or partially in SPARK. A second table shows
then the number of proved and non proved checks…

Results for “Time Management”:
Analysis duration: 10 seconds (0 h 0 mn 10 s)

Table 1. Subprograms in SPARK
Subprograms fully in SPARK 3
Bodies not in SPARK 0
Specifications not in SPARK 0
Bodies not yet in SPARK 0
Bodies not yet in SPARK 0

Table 2. Results
Features Nb checks Proved
postcondition 2 100%
range_check 1 100%
Total 3 100%

Results for “Mathematical Library”
Analysis duration: 475 seconds (0 h 7 mn 55 s)

Table 3. Subprograms in SPARK
Subprograms fully in SPARK 83
Bodies not in SPARK 0
Specifications not in SPARK 0
Bodies not yet in SPARK 0
Bodies not yet in SPARK 0

Table 4. Results
Features Nb checks Proved
division_check 10 100%
overflow_check 46 100%
postcondition 26 92%
precondition 6 100%
range_check 49 95%
Total 137 97%

The non proved checks are due to the fact that some
algoritmic functions are not completely known by
GNATprove. It is for instance the case for trigonometric
functions:

 function Arctan (X : T_Float32) return T_Float32
 with
 Post => (Arctan'Result >= -C_Halfpi32) and then
 (Arctan'Result <= C_Halfpi32);

 function Arctan (X : T_Float32) return T_Float32
 is (Num32.Arctan (X));

The postcondition is not proved by GNATprove. The
exact behaviour of algorithmic functions depending of
the implementation, this behaviour is acceptable.

Algorithmic functions and their contracts are preferably
validated by intensive testing.

Results for “Single Variable”
Analysis duration: 118 seconds (0 h 1 mn 58 s)

Table 5. Subprograms in SPARK
Subprograms fully in SPARK 85
Bodies not in SPARK 0
Specifications not in SPARK 0
Bodies not yet in SPARK 0
Bodies not yet in SPARK 0

Table 6. Results
Features Nb checks Proved
discriminant_check 123 100%
Postcondition 30 100%
Precondition 115 100%
Total 268 100%

Results for “List Of Variables”
Analysis duration: 274 seconds (0 h 4 mn 34 s)

Table 7. Subprograms in SPARK
Subprograms fully in SPARK 140
Bodies not in SPARK 0
Specifications not in SPARK 0
Bodies not yet in SPARK 0
Bodies not yet in SPARK 0

Table 8. Results
Features Nb checks Proved
Assertion 85 100%
loop_invariant_initialization 2 100%
loop_invariant_preservation 2 100%
Postcondition 31 100%
Precondition 132 100%
Total 252 100%

Results for “Events”
Analysis duration: 371 seconds (0 h 6 mn 11 s)

Table 9. Subprograms in SPARK
Subprograms fully in SPARK 24
Bodies not in SPARK 0
Specifications not in SPARK 0
Bodies not yet in SPARK 0
Bodies not yet in SPARK 0

Table 10. Results
Features Nb checks Proved
Assertion 27 100%
discriminant_check 104 100%
loop_invariant_initialization 1 100%
loop_invariant_preservation 1 100%
overflow_check 5 100%
Postcondition 17 100%
Precondition 57 100%
range_check 1 100%
Total 213 100%

Results for “Expressions”
Analysis duration: 1992 seconds (0 h 33 mn 12 s)

Table 11. Subprograms in SPARK
Subprograms fully in SPARK 331
Bodies not in SPARK 0
Specifications not in SPARK 0
Bodies not yet in SPARK 0
Bodies not yet in SPARK 0

Table 12. Results
Features Nb checks Proved
Assertion 385 100%
discriminant_check 767 100%
loop_invariant_initialization 2 100%
loop_invariant_preservation 2 100%
overflow_check 2 100%
Postcondition 97 100%
Precondition 413 100%
range_check 2 100%
Total 1670 100%

Results for “Parameters”
Analysis duration: 279 seconds (0 h 4 mn 39 s)

Table 13. Subprograms in SPARK
Subprograms fully in SPARK 62
Bodies not in SPARK 0
Specifications not in SPARK 0
Bodies not yet in SPARK 0
Bodies not yet in SPARK 0

Table 14. Results
Features Nb checks Proved
Assertion 2 100%
discriminant_check 11 100%
index_check 6 66%
loop_invariant_initialization 1 100%
loop_invariant_preservation 1 100%
Postcondition 2 100%
Precondition 1 100%
range_check 7 100%
Total 31 93%

GNATprove is not yet able to verify the index of an
array which dimension is defined by a type discriminant

 subtype R is Integer range 1 .. 100;
 type T_Array is array (R range <>) of Boolean;
 type T_Record (L : R) is record
 A : T_Array (1 .. L);
 end record;

 function G (X : T_Record) return Boolean is
 (for all I in X.A'Range => X.A (I));

In function G, the index check X.A (I) is not proved
even if I is defined in the range of X.A. An improvement
of GNATprove is in progress in order to deal with such
case.

Results for “Functional Unit”
Analysis duration: 2921 seconds (0 h 48 mn 41 s)

Table 15. Subprograms in SPARK
Subprograms fully in SPARK 76
Bodies not in SPARK 0
Specifications not in SPARK 0
Bodies not yet in SPARK 13
Bodies not yet in SPARK 13

The origins of subprograms not yet in SPARK are the
following:
● class wide types (5 subprograms)
● tagged type (17 subprograms)
These origins are related to Object Oriented
Programming. The analysis of Object Oriented software
is foreseen but has not yet been implemented.

Table 16. Results
Features Nb checks Proved
Assertion 2 100%
discriminant_check 58 100%
index_check 26 15%
Loop_invariant_initialization 1 100%
Loop_invariant_preservation 1 100%
Postcondition 3 66%
Precondition 1 100%
range_check 14 71%
Total 106 74%

Most of the non proved VCs are due to index of an array
which dimension is defined by a type discriminant (see
“Parameters” section). The proof of the postconditions
is not possible before the other proofs.

Results for “Automated Procedure”
Analysis duration: 7803 seconds (2 h 10 mn 3 s)

Table 17. Subprograms in SPARK
Subprograms fully in SPARK 192
Bodies not in SPARK 28
Specifications not in SPARK 15
Bodies not yet in SPARK 3
Bodies not yet in SPARK 3

The origins of subprograms not in SPARK are the use
of accesses. Accesses are used in the case study to store
objects in a table. This kind of design can not be proved
by GNATprove.

The origins of subprograms not yet in SPARK are the
following:
● class wide types (20 subprograms)
● tagged type (22 subprograms)
As before, this is due to Object Oriented programming.

Table 18. Results
Features Nb checks Proved
Assertion 6 50%
discriminant_check 158 99%
index_check 68 25%
loop_invariant_initialization 2 50%
loop_invariant_preservation 2 100%
Postcondition 7 57%
Precondition 13 92%
range_check 28 53%
Total 284 74%

A part of the non proved VCs are due to index of an
array which dimension is defined by a type discriminant
(see “Parameters” section). The remaining non proved
VCs are due to a too complex subprogram. This
subprogram shall be split in several smaller
subprograms to be proved.

Results for “On Board Control Procedure”
Analysis duration: 13705 seconds (3 h 48 mn 25 s)

Table 19. Subprograms in SPARK
Subprograms fully in SPARK 547
Bodies not in SPARK 447
Specifications not in SPARK 30
Bodies not yet in SPARK 13
Bodies not yet in SPARK 13

The origins of subprograms not in SPARK are the
following:
● access (61 subprograms)

● unchecked conversion (377 subprograms)
Accesses are used with Object (see “Automated
Procedure” section). The unchecked conversions are
used in a library allowing reading external inputs. All
the concerned subprograms are very small and shall be
validated by intensive testing because there are out of
the perimeter of HiLite and of SPARK.

The origins of subprograms not yet in SPARK are the
following:
● attribute (10 subprograms)
● class wide types (23 subprograms)
● tagged type (25 subprograms)
As before, this is due to Object Oriented programming.

Table 20. Results
Features Nb checks Proved
Assertion 418 99%
discriminant_check 1113 99%
index_check 82 23%
loop_invariant_initialization 5 80%
loop_invariant_preservation 5 100%
overflow_check 7 100%
Postcondition 148 87%
Precondition 637 98%
range_check 39 61%
Total 2454 95%

A part of the non proved VCs are due to index of an
array which dimension is defined by a type discriminant
(see “Parameters” section). The remaining non proved
VCs are due to too complex subprograms. These
subprograms shall be split in several smaller
subprograms to be proved.

4. CONCLUSION

Despite the important results achieved by academic
researchers in the last decade, formal proof techniques
did not, up to now, break through in the software
industry in general and the space domain in particular.
The reasons for this failure were numerous: techniques
not natively supported by the programming languages
(necessity to define contracts in specific comments),
contracts not executable, tools not powerful enough or
too hard to be used by non expert.

The Hi-Lite project has suppressed these current
limitations of formal proof. The space community has to
take benefit from these advances by using these newly
available tools and by adapting accordingly the ECSS.

5. BIBLIOGRAPHY

[1] Formal Model Driven Engineering for Space
Onboard Software - ERTS 2012 - Eric
Conquet, François-Xavier Dormoy, Iulia
Dragomir, Susanne Graf, David Lesens, Piotr
Nienaltowski, Iulian Ober

[2] SPARK - The Proven Approach to High
Integrity Software - 2012 - John Barnes with
Altran Praxis

[3] Integrating Formal Program Validation with
Testing - ERTS 2012 - Cyrille Comar,
Johannes Kanig and Yannick Moy

