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ABSTRACT 

Any single error in critical software can have 
catastrophic consequences. Even though failures are 
usually not advertised, some software bugs have 
become famous, such as the error in the MIM-104 
Patriot. For space systems, experience shows that 
software errors are a serious concern: more than half of 
all satellite failures from 2000 to 2003 involved 
software. 
To address this concern, this paper addresses the use of 
formal verification of software developed in Ada. 

1. INTRODUCTION 

Software validation activities mandated for critical 
software are essential to achieve the required level of 
confidence. They are becoming increasingly difficult 
and costly as, over time, they require the development 
and maintenance of a large body of functional and 
robustness tests on larger and more complex 
applications. Testing and code review, the most widely 
deployed techniques for software validation, suffer from 
severe shortcomings. Indeed, both methods are very 
time consuming and labour intensive processes. For 
most critical systems, testing represents more than half 
of the total development costs. And, despite this high 
cost, it is impossible to discover all bugs with testing. In 
short, as E. W. Dijsktra puts it: “Program testing can be 
a very effective way to show the presence of bugs, but is 
hopelessly inadequate for showing their absence.” 
 
Formal program validation offers a way to reduce these 
costs while providing stronger guarantees than testing. 
Addressing validation activities with formal validation 
is supported by upcoming standards such as DO-178C 
for software development in avionics. The Hi-Lite 
project has pursued the integration of formal validation 
with testing for projects developed in Ada: formal 
validation can be applied independently to subprograms 
that fall in the SPARK subset of Ada, while testing can 
be applied to all other subprograms. AdaCore and 
Astrium Space Transportation have been working 
together since 2010 to define the subset of Ada that can 
be analyzed formally, and extensions to Ada that 

facilitate specification and validation. AdaCore 
developed tools for static and dynamic validation that 
programs implement their specification. Astrium has 
applied these tools to various case studies from the 
space domain.  
 
This paper provides the details of the chosen formal 
validation approach and its application results. 

2. ADA PROGRAMS FORMAL VALIDATION 

SPARK [2] is a subset of Ada augmented with special 
annotations (in stylized comments) to specify the 
expected functional behaviour of the program. Among 
these annotations, “Subprogram contracts” are the most 
important, specifying both in which context a 
subprogram is called (its precondition) and the expected 
outcome of the subprogram (its postcondition). These 
specifications can be either partial or total. A set of tools 
allows the formal validation that a program implements 
its specification, and that it cannot raise a run-time error 
when executed (no uninitialized read, no out-of-bounds 
array access, zero divide, etc.). These validations are 
done independently for each subprogram, by using the 
contract (both precondition and postcondition) of a 
subprogram at each calling points in the main program. 
 
In the Hi-Lite project, we have redefined a new version 
of the SPARK language, where all annotations are now 
taken from Ada itself. This was made possible because 
the new version of Ada issued in 2012 includes 
specification features, such as preconditions and 
postconditions, as well as a richer expression language 
to use in contracts.  
 
In the example below, one can specify that a function 
Find only applies to pairs of a Table and a Value where 
the Value appears in the Table (see the precondition 
below), and that it then returns the first such index (see 
the postcondition below). This contract uses the new 
quantified expressions that allow expressing the usual 
mathematical quantifications over a finite range: 
existential quantification introduced by for some and 
universal quantification introduced by for all. The result 



of the function is designated by Find’Result in the 
postcondition. 
 
 function Find (Table : MyArray; Value : T1) return T2 
  with 
    Pre  => (for some Index in Table’Range =>  
        Table (Index) = Value), 
    Post => Table (Find’Result) = Value  and then 
        (for all Index in Table’First .. Find’Result - 1 =>  
            Table (Index) /= Value); 
 
Ada defines other language aspects, pragmas and 
attributes to facilitate the expression of specifications. 
The Ada Reference Manual precisely defines the 
meaning of these features in terms of execution. For 
example, a for all quantification executes as a loop, and 
returns the result True if the expression evaluated is 
True for all values in the range, or else it returns the 
result False as soon as one evaluation of the expression 
is False. The precondition (resp. the postcondition) 
evaluates as an assertion that raises an error at run time 
if the expression evaluates to False on subprogram entry 
(resp. subprogram exit). 
 
The new version of SPARK comprises most of Ada, 
only excluding features that make it notably more 
difficult to specify programs, or to prove them 
automatically. The most notable restrictions are: 
● The use of access types and allocators is not 

permitted. 
● All expressions (including function calls) are free 

of side-effects. 
● Aliasing of names is not permitted. 
● The goto statement is not permitted. 
● The use of controlled types is not permitted. 
● Tasking is not currently permitted (it is intended 

that this will be included in a future version of the 
SPARK language). 

● Raising and handling of exceptions is not permitted 
(exceptions can be included in a program but proof 
must be used to show that they cannot be raised; 
these restrictions may also be relaxed in a future 
version of the language). 

 
We have defined additional language constructs 
(aspects, pragmas and attributes) in SPARK to further 
facilitate formal specification and validation, in 
particular for: 

● Specification of subprogram data dependences (the 
globals annotation in SPARK 2005). The following 
example declaration specifies that the procedure 
reads and writes the global array Table: 

 
procedure Update_Index (I : Index) 
  with Global => (In_Out => Table); 
 

● Specification of subprogram data flows (the derives 
annotation in SPARK 2005). The following 
example declaration specifies that the new value of 
parameter X depends on the value of Y only: 

 
procedure P (X : in out Integer; Y, Z : Integer) 
  with Depends => (X => Y); 

● specification of contracts by disjoint cases 
● proof of subprogram with loops (loop invariants) 
● proof of loop termination (loop variants) 
 
Constructs for specifying the functional behaviour of a 
program are defined in terms of execution. For example, 
the failure to respect a loop invariant or variant leads to 
a run-time exception during execution. Constructs for 
specifying data dependences and flows are defined in 
terms of validation only. 
 
The tool GNATprove [3] developed in the context of 
project Hi-Lite aims at providing for this new version of 
SPARK the same functionality provided by the 
validation tools for SPARK 2005. The main differences 
between the two versions of the technology are that: 
● GNATprove interprets annotations (like 

preconditions and postconditions) in exactly the 
same way as they are interpreted during execution. 
In particular, GNATprove needs to prove that 
expressions cannot raise run-time errors when 
evaluated. 

● GNATprove can be applied on units that do not fall 
completely in the SPARK subset. In that case, it 
ignores the part of the unit that are not SPARK 
compliant. 

 
The fact that specifications have the same meaning in 
proofs and during execution is very useful for 
debugging specifications: a run-time failure during 
testing might reveal that a precondition is wrong, and 
then classical debugging can be used to understand the 
failure. This perfect match between dynamic and static 
interpretation of specifications is also the basis for the 



combination of formal validation and testing. This 
allows discharging by testing the assumptions made 
during formal validation, when a program is only 
partially proved. These assumptions may be both 
contracts written by the user (preconditions and 
postconditions) that need to be exercised during testing, 
or implicit contracts added by the proof tools 
concerning initialization of subprogram inputs/outputs 
and non-aliasing properties. Under special switches, the 
GNAT compiler inserts the corresponding checks for 
these implicit contracts, so that they can too be verified 
dynamically during testing. 

3. AEROSPACE CASE STUDY 

3.1 Objectives of the case study 

In 2011, the “Full Model Driven Development for On-
Board Software” project (co-funded by ESA, Astrium 
Space Transportation, Esterel Technologies, IRIT, 
Altran Praxis and Verimag) has experimented the use of 
formal methods for the development of space software. 
The automatic generation of Ada code and the use of 
SPARK 2005 were specifically analysed on a case study 
developed by Astrium Space Transportation with the 
following results: 
● A certifiable automated code generator from 

SCADE Suite models to SPARK 2005 code has 
been developed and is now commercialized by 
Esterel Technologies. 

● The ability to develop highly critical software in 
SPARK 2005 was assessed. On the one hand, it 
allowed Astrium Space Transportation to efficiently 
develop a case study which was exhaustively 
proved to be free of run-time errors. On the other 
hand, the following drawbacks were identified: 
○ The restrictions imposed by SPARK 2005 lead 

to non negligible overcost and restrict its scope 
of use. 

○ Software engineers may accept only with great 
difficulties these constraints, even after an 
adequate training. 

○ The formal proof activity needs to be 
performed independently from the classical test 
activity (due to the fact that the SPARK 2005 
contracts are not executable). 

○ The use of the interactive proof tool of the 
SPARK suite is highly complex and expensive. 

The Hi-Lite approach has been assessed with the 
objectives to keep the benefits of SPARK 2005 
(detection of potentially dangerous code and formal 

exhaustive proof) and at the same time to extend its 
scope and to facilitate its use. 

3.2 Description of the case study 

The case study developed by Astrium Space 
Transportation implements a prototype of a generic 
OBCP (On-Board Control Procedure) engine following 
the principles specified in the ECSS-E-ST-70-01C 
(“Spacecraft on-board control procedures” – 16 April 
2010). This standard defines the general principles of a 
Mission and Vehicle Management functionality. An on-
board control procedure is in practice represented by a 
simplified programming language interpreted onboard 
the spacecraft. This interpreter is generally at the 
highest level of criticality of the spacecraft. Our 
implementation of this interpreter in SPARK is table 
driven and relies greatly on Ada generic programming. 
 
The OBCP language contains the following features: 
● Mathematical expressions 
● Events detection with  a notion of timed window 
● Automated procedures to implement change of 

modes 
● OBCP procedures with complex control (if-then-

else, jump, loop, sub-procedures, etc.) 
 
The developers of the case study have taken care to: 
● Use only strict variable types approach: For each 

variable, a range of accepted value has been 
defined. 

● Avoid as far as possible any of the constructs 
forbidden by Hi-Lite, for instance pointers. 

● Strictly define for every single subprogram a set of 
test cases and a formal contract (see section 2). 

● Use advanced constructs of Ada 2012 in order to 
assess the Hi-Lite scope: 
○ Generic packages: This will allow making the 

OBCP engine generic enough to be used on a 
launcher such as Ariane 6 or a spacecraft such 
as the MPCV. 

○ Object Oriented design: This feature also 
increases the genericity of the software, 
making its customization to a specific launcher 
or spacecraft easy and safe. 

○ Expression functions offering a convenient 
way to express simple functions. 

○ Conditional expressions providing a compact 
and more readable notation. 



○ Quantified expressions, used in particular in 
contracts. 

 
The following subprogram is an example of expression 
function using a quantified expression: 
 

function G (X : T_Record) return Boolean is 
     (for all I in X.A'Range => X.A (I)); 

 
This implementation of a reusable Mission and Vehicle 
Management relies also greatly on 
● Generic packages 
● Discriminant 
 
The generic packages allow an easy customization of 
the code: 
 
     generic type T_Event_Id is (<>);-- the list of events 
     package Mvm.Events is … 
 
The discriminants ensure a strict typing of the code, 
even in case of heterogeneous communication between 
components of the system: 
 
   type T_Monitoring is (No_Window, Time_Window, 
      Protected_Window); 
 
   type T_Event_Status 
     (Monitoring_Type : T_Monitoring := No_Window) 
   is record 
         Detection_Time : T_Float32; 
         case Type_Of_Monitoring is 
         when No_Window =>null; 
         when Time_Window Protected_Window => 
            Start_Window : T_Float32; 
            End_Window : T_Float32; 
         end case; 
      end record; 

3.3 Results of the formal proof activity 

All the contracts have been checked by dynamic testing. 
This phase is quite classical, except for the fact that the 
testing includes the preconditions and the postconditions 
defined in the case study. Then, GNATprove has been 
applied.  
 
This case study contains 10 parts which results are 
detailed in the following sections. For each part, the 
duration of the analysis is provided. Then, a first table 
shows the number of subprograms in SPARK, not in 

SPARK or partially in SPARK. A second table shows 
then the number of proved and non proved checks… 

Results for “Time Management”: 
Analysis duration: 10 seconds (0 h 0 mn 10 s) 

Table 1. Subprograms in SPARK 
Subprograms fully in SPARK 3 
Bodies not in SPARK 0 
Specifications not in SPARK 0 
Bodies not yet in SPARK 0 
Bodies not yet in SPARK 0 

Table 2. Results 
Features Nb checks Proved 
postcondition 2 100% 
range_check 1 100% 
Total 3 100% 

Results for “Mathematical Library” 
Analysis duration: 475 seconds (0 h 7 mn 55 s) 

Table 3. Subprograms in SPARK 
Subprograms fully in SPARK 83 
Bodies not in SPARK 0 
Specifications not in SPARK 0 
Bodies not yet in SPARK 0 
Bodies not yet in SPARK 0 

Table 4. Results 
Features Nb checks Proved 
division_check 10 100% 
overflow_check 46 100% 
postcondition 26 92% 
precondition 6 100% 
range_check 49 95% 
Total 137 97% 
 
The non proved checks are due to the fact that some 
algoritmic functions are not completely known by 
GNATprove. It is for instance the case for trigonometric 
functions: 
 
   function Arctan (X : T_Float32) return T_Float32 
   with 
     Post => (Arctan'Result >= -C_Halfpi32) and then 
     (Arctan'Result <= C_Halfpi32); 
 
   function Arctan (X : T_Float32) return T_Float32 
   is (Num32.Arctan (X)); 
 
The postcondition is not proved by GNATprove. The 
exact behaviour of algorithmic functions depending of 
the implementation, this behaviour is acceptable. 



Algorithmic functions and their contracts are preferably 
validated by intensive testing. 

Results for “Single Variable” 
Analysis duration: 118 seconds (0 h 1 mn 58 s) 

Table 5. Subprograms in SPARK 
Subprograms fully in SPARK 85 
Bodies not in SPARK 0 
Specifications not in SPARK 0 
Bodies not yet in SPARK 0 
Bodies not yet in SPARK 0 

Table 6. Results 
Features Nb checks Proved 
discriminant_check 123 100% 
Postcondition 30 100% 
Precondition 115 100% 
Total 268 100% 

Results for “List Of Variables” 
Analysis duration: 274 seconds (0 h 4 mn 34 s) 

Table 7. Subprograms in SPARK 
Subprograms fully in SPARK 140 
Bodies not in SPARK 0 
Specifications not in SPARK 0 
Bodies not yet in SPARK 0 
Bodies not yet in SPARK 0 

Table 8. Results 
Features Nb checks Proved 
Assertion 85 100% 
loop_invariant_initialization 2 100% 
loop_invariant_preservation 2 100% 
Postcondition 31 100% 
Precondition 132 100% 
Total 252 100% 

Results for “Events” 
Analysis duration: 371 seconds (0 h 6 mn 11 s) 

Table 9. Subprograms in SPARK 
Subprograms fully in SPARK 24 
Bodies not in SPARK 0 
Specifications not in SPARK 0 
Bodies not yet in SPARK 0 
Bodies not yet in SPARK 0 
 
 
 
 
 
 
 

Table 10. Results 
Features Nb checks Proved 
Assertion 27 100% 
discriminant_check 104 100% 
loop_invariant_initialization 1 100% 
loop_invariant_preservation 1 100% 
overflow_check 5 100% 
Postcondition 17 100% 
Precondition 57 100% 
range_check 1 100% 
Total 213 100% 

Results for “Expressions” 
Analysis duration: 1992 seconds (0 h 33 mn 12 s) 

Table 11. Subprograms in SPARK 
Subprograms fully in SPARK 331 
Bodies not in SPARK 0 
Specifications not in SPARK 0 
Bodies not yet in SPARK 0 
Bodies not yet in SPARK 0 

Table 12. Results 
Features Nb checks Proved 
Assertion 385 100% 
discriminant_check 767 100% 
loop_invariant_initialization 2 100% 
loop_invariant_preservation 2 100% 
overflow_check 2 100% 
Postcondition 97 100% 
Precondition 413 100% 
range_check 2 100% 
Total 1670 100% 

Results for “Parameters” 
Analysis duration: 279 seconds (0 h 4 mn 39 s) 

Table 13. Subprograms in SPARK 
Subprograms fully in SPARK 62 
Bodies not in SPARK 0 
Specifications not in SPARK 0 
Bodies not yet in SPARK 0 
Bodies not yet in SPARK 0 

Table 14. Results 
Features Nb checks Proved 
Assertion 2 100% 
discriminant_check 11 100% 
index_check 6 66% 
loop_invariant_initialization 1 100% 
loop_invariant_preservation 1 100% 
Postcondition 2 100% 
Precondition 1 100% 
range_check 7 100% 
Total 31 93% 



GNATprove is not yet able to verify the index of an 
array which dimension is defined by a type discriminant 
 
   subtype R is Integer range 1 .. 100; 
   type T_Array is array (R range <>) of Boolean; 
   type T_Record (L : R) is record 
         A : T_Array (1 .. L); 
      end record; 
 
   function G (X : T_Record) return Boolean is 
     (for all I in X.A'Range => X.A (I)); 
 
In function G, the index check X.A (I) is not proved 
even if I is defined in the range of X.A. An improvement 
of GNATprove is in progress in order to deal with such 
case. 

Results for “Functional Unit” 
Analysis duration: 2921 seconds (0 h 48 mn 41 s) 

Table 15. Subprograms in SPARK 
Subprograms fully in SPARK 76 
Bodies not in SPARK 0 
Specifications not in SPARK 0 
Bodies not yet in SPARK 13 
Bodies not yet in SPARK 13 
 
The origins of subprograms not yet in SPARK are the 
following: 
● class wide types (5 subprograms) 
● tagged type (17 subprograms) 
These origins are related to Object Oriented 
Programming. The analysis of Object Oriented software 
is foreseen but has not yet been implemented. 

Table 16. Results 
Features Nb checks Proved 
Assertion 2 100% 
discriminant_check 58 100% 
index_check 26 15% 
Loop_invariant_initialization 1 100% 
Loop_invariant_preservation 1 100% 
Postcondition 3 66% 
Precondition 1 100% 
range_check 14 71% 
Total 106 74% 
 
Most of the non proved VCs are due to index of an array 
which dimension is defined by a type discriminant (see 
“Parameters” section). The proof of the postconditions 
is not possible before the other proofs. 
 

Results for “Automated Procedure” 
Analysis duration: 7803 seconds (2 h 10 mn 3 s) 

Table 17. Subprograms in SPARK 
Subprograms fully in SPARK 192 
Bodies not in SPARK 28 
Specifications not in SPARK 15 
Bodies not yet in SPARK 3 
Bodies not yet in SPARK 3 
 
The origins of subprograms not in SPARK are the use 
of accesses. Accesses are used in the case study to store 
objects in a table. This kind of design can not be proved 
by GNATprove. 
 
The origins of subprograms not yet in SPARK are the 
following: 
● class wide types (20 subprograms) 
● tagged type (22 subprograms) 
As before, this is due to Object Oriented programming. 

Table 18. Results 
Features Nb checks Proved 
Assertion 6 50% 
discriminant_check 158 99% 
index_check 68 25% 
loop_invariant_initialization 2 50% 
loop_invariant_preservation 2 100% 
Postcondition 7 57% 
Precondition 13 92% 
range_check 28 53% 
Total 284 74% 
 
A part of the non proved VCs are due to index of an 
array which dimension is defined by a type discriminant 
(see “Parameters” section). The remaining non proved 
VCs are due to a too complex subprogram. This 
subprogram shall be split in several smaller 
subprograms to be proved. 

Results for “On Board Control Procedure” 
Analysis duration: 13705 seconds (3 h 48 mn 25 s) 

Table 19. Subprograms in SPARK 
Subprograms fully in SPARK 547 
Bodies not in SPARK 447 
Specifications not in SPARK 30 
Bodies not yet in SPARK 13 
Bodies not yet in SPARK 13 
 
The origins of subprograms not in SPARK are the 
following: 
● access (61 subprograms) 



● unchecked conversion (377 subprograms) 
Accesses are used with Object (see “Automated 
Procedure” section). The unchecked conversions are 
used in a library allowing reading external inputs. All 
the concerned subprograms are very small and shall be 
validated by intensive testing because there are out of 
the perimeter of HiLite and of SPARK. 
 
The origins of subprograms not yet in SPARK are the 
following: 
● attribute (10 subprograms) 
● class wide types (23 subprograms) 
● tagged type (25 subprograms) 
As before, this is due to Object Oriented programming. 

Table 20. Results 
Features Nb checks Proved 
Assertion 418 99% 
discriminant_check 1113 99% 
index_check 82 23% 
loop_invariant_initialization 5 80% 
loop_invariant_preservation 5 100% 
overflow_check 7 100% 
Postcondition 148 87% 
Precondition 637 98% 
range_check 39 61% 
Total 2454 95% 
 
A part of the non proved VCs are due to index of an 
array which dimension is defined by a type discriminant 
(see “Parameters” section). The remaining non proved 
VCs are due to too complex subprograms. These 
subprograms shall be split in several smaller 
subprograms to be proved. 

4. CONCLUSION 

Despite the important results achieved by academic 
researchers in the last decade, formal proof techniques 
did not, up to now, break through in the software 
industry in general and the space domain in particular. 
The reasons for this failure were numerous: techniques 
not natively supported by the programming languages 
(necessity to define contracts in specific comments), 
contracts not executable, tools not powerful enough or 
too hard to be used by non expert. 
 
The Hi-Lite project has suppressed these current 
limitations of formal proof. The space community has to 
take benefit from these advances by using these newly 
available tools and by adapting accordingly the ECSS. 
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