AdaCore Blog

29 entries tagged with #Safety Critical Development

by Fabien Chouteau

Embedded Ada/SPARK, There's a Shortcut

For years in this blog my colleagues and I have published examples, demos, and how-to’s on Ada/SPARK embedded (as in bare-metal) development. Most of the time, if not always, we focused on one way of doing things: to start from scratch and write everything in Ada/SPARK, from the low level drivers to the application. While this way of doing Ada/SPARK embedded will yield the best results in terms of software quality, it might not be the most efficient in all cases. In this blog post I want to present an alternative method to introduce Ada/SPARK into your embedded development projects.


by Paul Butcher

Join us at the High Integrity Software (HIS) Conference 2022!

After two years of virtual events, we are very happy to report that the High Integrity Software Conference (HIS) will be making a physical comeback on Tuesday 11th October 2022 at the Bristol Marriott Hotel City Centre, Bristol, UK. Since 2014, AdaCore has been co-organising the event with Capgemini Engineering (previously known as Altran Technologies, SA). The success and growth of the conference have ensured it remains a regular fixture for returning delegates, and the exciting lineup for this year's event will ensure HIS 2022 is no exception!

by Quentin Ochem , Florian Gilcher

AdaCore and Ferrous Systems Joining Forces to Support Rust

For over 25 years, AdaCore has been committed to supporting the needs of safety- and mission-critical industries. This started with an emphasis on the Ada programming language and its toolchain, and over the years has been extended to many other technologies. AdaCore’s product offerings today include support for the Ada language and its formally verifiable SPARK subset, C and C++, and Simulink and Stateflow models. We have accomplished this while addressing the requirements of various safety standards such as DO-178B/C, EN 50128, ECSS-E-ST-40C / ECSS-Q-ST-80C, IEC 61508 and ISO 26262.

by Kyriakos Georgiou

Security-Hardening Software Libraries with Ada and SPARK

Part of AdaCore's ongoing efforts under the HICLASS project is to demonstrate how the SPARK technology can play an integral part in the security-hardening of existing software libraries written in other non-security-oriented programming languages such as C. This blog post presents the first white paper under this work-stream, “Security-Hardening Software Libraries with Ada and SPARK”.

#SPARK    #STM32    #Embedded   

by Paul Butcher

Finding Vulnerabilities using Advanced Fuzz testing and AFLplusplus v3.0

Some of you may recall an AdaCore blog post written in 2017 by Thales engineer Lionel Matias titled "Leveraging Ada Run-Time Checks with Fuzz Testing in AFL". This insightful post took us on a journey of discovery as Lionel demonstrated how Ada programs, compiled using GNAT Pro and an adapted assembler pass can be subjected to advanced fuzz testing. In order to achieve this Lionel demonstrated how instrumentation of the generated assembly code around jump and label instructions, could be subjected to grey-box (path aware) fuzz testing (using the original AFL v2.52b as the fuzz engine). Lionel explained how applying the comprehensive spectrum of Ada runtime checks, in conjunction with Ada's strong typing and contract based programming, enhanced the capabilities of fuzz testing beyond the abilities of other languages. Ada's advanced runtime checking, for exceptions like overflows, and the scrutiny of Ada's design by contract assertions allow corner case bugs to be found whilst also utilising fuzz testing to verify functional correctness.


by Pat Rogers

From Ada to Platinum SPARK: A Case Study for Reusable Bounded Stacks

This blog entry describes the transformation of an Ada stack ADT into a completely proven SPARK implementation that relies on static verification instead of run-time enforcement of the abstraction’s semantics. We will prove that there are no reads of unassigned variables, no array indexing errors, no range errors, no numeric overflow errors, no attempts to push onto a full stack, no attempts to pop from an empty stack, that subprogram bodies implement their functional requirements, and so on. As a result, we get a maximally robust implementation of a reusable stack abstraction providing all the facilities required for production use.

#SPARK    #Ada    #Transitioning to SPARK   

by Quentin Ochem

Witnessing the Emergence of a New Ada Era

For nearly four decades the Ada language (in all versions of the standard) has been helping developers meet the most stringent reliability, safety and security requirements in the embedded market. As such, Ada has become an entrenched player in its historic A&D niche, where its technical advantages are recognized and well understood. Ada has also seen usage in other domains (such as medical and transportation) but its penetration has progressed at a somewhat slower pace. In these other markets Ada stands in particular contrast with the C language, which, although suffering from extremely well known and documented flaws, remains a strong and seldom questioned default choice. Or at least, when it’s not the choice, C is still the starting point (a gateway drug?) for alternatives such as C++ or Java, which in the end still lack the software engineering benefits that Ada embodies..

by Allan Ascanius , Per Dalgas Jakobsen

Winning DTU RoboCup with Ada and SPARK

The Danish Technical University has a yearly RoboCup where autonomous vehicles solve a number of challenges. We participated with RoadRunner, a 3D printed robot with wheel suspension, based on the BeagleBone Blue ARM-based board and the Pixy 1 camera with custom firmware enabling real-time line detection. Code is written in Ada and formally proved correct with SPARK at Silver level.

#Robotics    #Ada    #SPARK   

by J. German Rivera

Make with Ada 2017- A "Swiss Army Knife" Watch

SummaryThe Hexiwear is an IoT wearable development board that has two NXP Kinetis microcontrollers. One is a K64F (Cortex-M4 core) for running the main embedded application software. The other one is a KW40 (Cortex M0+ core) for running a wireless connectivity stack (e.g., Bluetooth BLE or Thread). The Hexiwear board also has a rich set of peripherals, including OLED display, accelerometer, magnetometer, gryroscope, pressure sensor, temperature sensor and heart-rate sensor. This blog article describes the development of a "Swiss Army Knife" watch on the Hexiwear platform. It is a bare-metal embedded application developed 100% in Ada 2012, from the lowest level device drivers all the way up to the application-specific code, for the Hexiwear's K64F microcontroller. I developed Ada drivers for Hexiwear-specific peripherals from scratch, as they were not supported by AdaCore's Ada drivers library. Also, since I wanted to use the GNAT GPL 2017 Ada compiler but the GNAT GPL distribution did not include a port of the Ada Runtime for the Hexiwear board, I also had to port the GNAT GPL 2017 Ada runtime to the Hexiwear. All this application-independent code can be leveraged by anyone interested in developing Ada applications for the Hexiwear wearable device.

by Jonas Attertun

Make with Ada 2017: Brushless DC Motor Controller

This project involves the design of a software platform that provides a good basis when developing motor controllers for brushless DC motors (BLDC/PMSM). It consist of a basic but clean and readable implementation of a sensored field oriented control algorithm. Included is a logging feature that will simplify development and allows users to visualize what is happening. The project shows that Ada successfully can be used for a bare-metal project that requires fast execution.

#Makers    #MakewithAda    #STM32    #Embedded   

by Yannick Moy

Verified, Trustworthy Code with SPARK and Frama-C

Last week, a few of us at AdaCore have attended a one-day workshop organized at Thales Research and Technologies, around the topic of "Verified, trustworthy code - formal verification of software". Attendees from many different branches of Thales (avionics, railway, security, networks) were given an overview of the state-of-practice in formal verification of software, focused on two technologies: the SPARK technology that we develop at AdaCore for programs in Ada, and the Frama-C technology developed at CEA research labs for programs in C. The most interesting part of the day was the feedback given by three operational teams who have experimented during a few months with either SPARK (two teams) or Frama-C (one team). The lessons learned by first-time adopters of such technologies are quite valuable.

#SPARK    #Formal Methods   

by Anthony Leonardo Gracio

How to prevent drone crashes using SPARK

The Crazyflie is a very small quadcopter sold as an open source development platform: both electronic schematics and source code are directly available on their GitHub and its architecture is very flexible. Even if the Crazyflie flies out of the box, it has not been developed with safety in mind: in case of crash, its size, its weight and its plastic propellers won’t hurt anyone! But what if the propellers were made of carbon fiber, and shaped like razor blades to increase the drone’s performance? In theses circumstances, a bug in the flight control system could lead to dramatic events. In this post, I present the work I did to rewrite the stabilization system of the Crazyflie in SPARK 2014, and to prove that it is free of runtime errors. SPARK also helped me to discover little bugs in the original firmware, one of which directly related with overflows. Besides the Crazyflie, this work could be an inspiration for others to do the same work on larger and more safety-critical drones.

#UAVs    #crazyflie    #SPARK    #Drones   

by Yannick Moy

A Building Code for Building Code

In a recent article in Communications of the ACM, Carl Landwehr, a renowned scientific expert on security, defends the view that the software engineering community is doing overall a poor job at securing our global information system and that this is mostly avoidable by putting what we know works to work, to the point that most vulnerabilities could be completely avoided by design if we cared enough. Shocking! Or so it should appear.

#Ada    #SPARK    #Static Analysis    #Security   

by Olivier Ramonat

AdaCore Releases GNAT Pro 7.3, QGen 1.0 and GNATdashboard 1.0

February saw the annual customer release of a number of important products. This is no mean task when you consider the fact that GNAT Pro is available on over 50 platforms and supports over 150 runtime profiles (ranging from Full Ada Support to the very restricted Zero Footprint Profile suitable for safety-critical development). All in all, from the branching of the preview version to the customer release it takes us nearly 4 months to package everything up! Quality is assured through the internally developed AdaCore Factory.

#GNAT Pro    #SPARK Pro    #GPS    #GNATbench    #GNATdashboard    #Ada    #AdaCore Factory    #CodePeer    #QGen