AdaCore Blog

24 entries tagged with #GNAT GPL

by Lionel Matias

Leveraging Ada Run-Time Checks with Fuzz Testing in AFL

Fuzzing is a very popular bug finding method. The concept, very simple, is to continuously inject random (garbage) data as input of a software component, and wait for it to crash. If, like me, you find writing robustness test tedious and not very efficient in finding bugs, you might want to try fuzzing your Ada code.Here's a recipe to fuzz-test your Ada code, using American Fuzzy Lop and all the runtime checks your favorite Ada compiler can provide.Let's see (quickly) how AFL works, then jump right into fuzzing 3 open-source Ada libraries: ZipAda, AdaYaml, and GNATCOLL.JSON.

#Testing    #Ada    #VerificationTools   

by J. German Rivera

Make with Ada 2017- A "Swiss Army Knife" Watch

SummaryThe Hexiwear is an IoT wearable development board that has two NXP Kinetis microcontrollers. One is a K64F (Cortex-M4 core) for running the main embedded application software. The other one is a KW40 (Cortex M0+ core) for running a wireless connectivity stack (e.g., Bluetooth BLE or Thread). The Hexiwear board also has a rich set of peripherals, including OLED display, accelerometer, magnetometer, gryroscope, pressure sensor, temperature sensor and heart-rate sensor. This blog article describes the development of a "Swiss Army Knife" watch on the Hexiwear platform. It is a bare-metal embedded application developed 100% in Ada 2012, from the lowest level device drivers all the way up to the application-specific code, for the Hexiwear's K64F microcontroller. I developed Ada drivers for Hexiwear-specific peripherals from scratch, as they were not supported by AdaCore's Ada drivers library. Also, since I wanted to use the GNAT GPL 2017 Ada compiler but the GNAT GPL distribution did not include a port of the Ada Runtime for the Hexiwear board, I also had to port the GNAT GPL 2017 Ada runtime to the Hexiwear. All this application-independent code can be leveraged by anyone interested in developing Ada applications for the Hexiwear wearable device.

by Rob Tice

The Adaroombot Project

The Adaroombot project consists of an iRobot CreateⓇ 2 and Ada running on a Raspberry Pi with a Linux OS. This is a great Intro-to-Ada project as it focuses on a control algorithm and a simple serial communications protocol. The iRobot CreateⓇ 2 platform was originally design for STEM education and has great documentation and support - making it very easy to create a control application using Ada. This blog looks at the creation of the project and some cool features of Ada that were learned along the way.

#Raspberry Pi    #ARM    #Linux    #Ada    #Roomba   

by Yannick Moy

(Many) More Low Hanging Bugs

We reported in a previous post our initial experiments to create lightweight checkers for Ada source code, based on the new Libadalang technology. The two checkers we described discovered 12 issues in the codebase of the tools we develop at AdaCore. In this post, we are reporting on 6 more lightweight checkers, which have discovered 114 new issues in our codebase. This is definitely showing that these kind of checkers are worth integrating in static analysis tools, and we look forward to integrating these and more in our static analyzer CodePeer for Ada programs.

#Static Analysis    #Libadalang   

by Yannick Moy , Nicolas Roche

A Usable Copy-Paste Detector in A Few Lines of Python

After we created lightweight checkers based on the recent Libadalang technology developed at AdaCore, a colleague gave us the challenge of creating a copy-paste detector based on Libadalang. It turned out to be both easier than anticipated, and much more efficient and effective than we could have hoped for. In the end, we hope to use this new detector to refactor the codebase of some of our tools, and we expect to integrate it in our IDEs.

#Libadalang    #Static Analysis    #refactoring   

by Jorge Real

Writing on Air

While searching for motivating projects for students of the Real-Time Systems course here at Universitat Politècnica de València, we found a curious device that produces a fascinating effect. It holds a 12 cm bar from its bottom and makes it swing, like an upside-down pendulum, at a frequency of nearly 9 Hz. The free end of the bar holds a row of eight LEDs. With careful and timely switching of those LEDs, and due to visual persistence, it creates the illusion of text... floating in the air!

#STM32    #Ravenscar    #Ada    #Makers    #Embedded Development   

by Raphaël Amiard , Yannick Moy , Pierre-Marie de Rodat

Going After the Low Hanging Bug

At AdaCore, we have a strong expertise in deep static analysis tools (CodePeer and SPARK), and we have been relying on the compiler GNAT and our coding standard checker GNATcheck to deal with more syntactic or weakly-semantic checks. The recent Libadalang technology, developed at AdaCore, provided us with an ideal basis to develop specialized light-weight static analyzers. As an experiment, we implemented two simple checkers using the Python binding of Libadalang. The results on our own codebase were eye-opening: we found a dozen bugs in the codebases of the tools we develop at AdaCore (including the compiler and static analyzers).

#Static Analysis   

by Pierre-Marie de Rodat

C library bindings: GCC plugins to the rescue

I recently started working on an Ada binding for the excellent libuv C library. This library provides a convenient API to perform asynchronous I/O under an event loop, which is a popular way to develop server stacks. A central part of this API is its enumeration type for error codes: most functions use it. Hence, one of the first things I had to do was to bind the enumeration type for error codes. Believe it or not: this is harder than it first seems!

#Code generation    #Ada   

by Tristan Gingold

AdaCore at FOSDEM'15

I was at Bruxelles on January 31st to present the components of GNAT GPL 2015 : SPARK 2014 and GNAT GPL for ARM bare-board. This is not unrelated to a previous blog entry on Tetris in SPARK on ARM Cortex M4, in particular I presented that Tetris demo (I brought some boards with me and despite the simple package, none were broken!). The slides contain technical details on the ravenscar profile (main principles), how to build a program for the stm32f4-discovery board and how to port the runtime. There are also less technical slides such as why we choose the stm32f4 board and photos of some graphical demos. As that could be useful to anyone interested in Ravenscar or in porting the runtime to other boards or other platforms, we've made the slides available here.

#ARM    #Ravenscar    #FOSDEM    #GNATGPL