AdaCore Blog

73 entries tagged with #Dev Projects

by Maxim Reznik

Introduction to VSS library

The VSS (as an abbre­vi­a­tion for Vir­tu­al String Sub­sys­tem) library is designed to pro­vide advanced string and text pro­cess­ing capa­bil­i­ties. It offers a con­ve­nient and robust API that allows devel­op­ers to work with Uni­code text, regard­less of its inter­nal rep­re­sen­ta­tion. In this arti­cle, we will intro­duce you to the library and explain its pur­pose, high­light­ing its use­ful­ness for devel­op­ers work­ing in this area.

#Unicode    #strings    #Libraries    #vss   

by Fabien Chouteau

Ada/SPARK Crate Of The Year 2022 Winners Announced!

In June of 2022 we launched the second edition of the Ada/SPARK Crate Of The Year Awards. We believe the Alire source package manager is a game changer for Ada/SPARK, so we want to use this competition to reward the people contributing to the ecosystem. Today we are pleased to announce the results. But first, we want to congratulate all the participants, and the Alire community at large, for reaching 320 crates in the ecosystem in January of this year. We truly believe in a bright future for the Ada/SPARK open-source ecosystem with Alire at the forefront. Reaching this milestone is a great sign,both inside and outside the Ada/SPARK community, of the evolution and the energy of the ecosystem.

by Johannes Kliemann

Adding Ada to Rust

While implementing application logic in Ada or SPARK is an improvement over a pure C project, its weakest link is still the C code in the SDK. On the other hand, there are many libraries, board support packages, and SDKs written in Rust, easily usable with Cargo. So instead of building the Ada application on top of a C base, one could use a Rust base instead to combine the large catalog of ready-to-use software with Rust's safety features, providing a much more solid base for an Ada project.

by Yannick Moy

When Formal Verification with SPARK is the Strongest Link

Security is only as strong as its strongest link. That's important to keep in mind for software security, with its long chain of links, from design to development to deployment. Last year, members of NVIDIA's Offensive Security Research team (aka "red team") presented at DEF CON 29 their results on the evaluation of the security of a firmware written in SPARK and running on RISC-V. The ended up not finding vulnerabilities in the code, but in the RISC-V ISA instead. This year, the same team presented at DEF CON 30 a retrospective on the security evaluation of 17 high-impact projects since 2020. TL;DR: using SPARK makes a big difference for security, compared to using C/C++.

#Security    #SPARK    #Formal Verification   

by Fabien Chouteau

Embedded Ada/SPARK, There's a Shortcut

For years in this blog my colleagues and I have published examples, demos, and how-to’s on Ada/SPARK embedded (as in bare-metal) development. Most of the time, if not always, we focused on one way of doing things: to start from scratch and write everything in Ada/SPARK, from the low level drivers to the application. While this way of doing Ada/SPARK embedded will yield the best results in terms of software quality, it might not be the most efficient in all cases. In this blog post I want to present an alternative method to introduce Ada/SPARK into your embedded development projects.

#Embedded   

by Paul Butcher

Join us at the High Integrity Software (HIS) Conference 2022!

After two years of virtual events, we are very happy to report that the High Integrity Software Conference (HIS) will be making a physical comeback on Tuesday 11th October 2022 at the Bristol Marriott Hotel City Centre, Bristol, UK. Since 2014, AdaCore has been co-organising the event with Capgemini Engineering (previously known as Altran Technologies, SA). The success and growth of the conference have ensured it remains a regular fixture for returning delegates, and the exciting lineup for this year's event will ensure HIS 2022 is no exception!

by Yannick Moy

When the RISC-V ISA is the Weakest Link

NVIDIA has been using SPARK for some time now to develop safety- and security-critical firmware applications. At the recent DEF CON 29, hackers Zabrocki and Matrosov presented how they went about attacking NVIDIA firmware written in SPARK but ended up attacking the RISC-V ISA instead!Zabrocki starts by explaining the context for their red teaming exercise at NVIDIA, followed by a description of SPARK and their evaluation of the language from a security attack perspective. He shows how they used an extension of Ghidra to decompile the binary code generated by GNAT and describes the vulnerability they identified in the RISC-V ISA thanks to that decompilation. Matrosov goes on to explain how they glitched the NVIDIA chip to exploit this vulnerability. Finally, Zabrocki talks about projects used to harden RISC-V platforms.

#Security    #SPARK    #RISC-V   

by Jessie Glockner

Celebrating Women Engineering Heroes - International Women in Engineering Day 2021

Women make up roughly 38% of the global workforce, yet they constitute only 10–20% of the engineering workforce. In the U.S., numbers suggest that 40% of women who graduate with engineering degrees never enter the profession or eventually leave it. Why? The reasons vary but primarily involve socio-economic constraints on women in general, workplace inequities, and lack of support for work-life balance. Sadly, history itself has often failed to properly acknowledge the instrumental contributions of women inventors, scientists, and mathematicians who have helped solve some of our world's toughest challenges. How can young women emulate their successes if they don't even know about them?

by Paul Butcher

Finding Vulnerabilities using Advanced Fuzz testing and AFLplusplus v3.0

Some of you may recall an AdaCore blog post written in 2017 by Thales engineer Lionel Matias titled "Leveraging Ada Run-Time Checks with Fuzz Testing in AFL". This insightful post took us on a journey of discovery as Lionel demonstrated how Ada programs, compiled using GNAT Pro and an adapted assembler pass can be subjected to advanced fuzz testing. In order to achieve this Lionel demonstrated how instrumentation of the generated assembly code around jump and label instructions, could be subjected to grey-box (path aware) fuzz testing (using the original AFL v2.52b as the fuzz engine). Lionel explained how applying the comprehensive spectrum of Ada runtime checks, in conjunction with Ada's strong typing and contract based programming, enhanced the capabilities of fuzz testing beyond the abilities of other languages. Ada's advanced runtime checking, for exceptions like overflows, and the scrutiny of Ada's design by contract assertions allow corner case bugs to be found whilst also utilising fuzz testing to verify functional correctness.

#Security   

by Jon Andrew

CuBit: A General-Purpose Operating System in SPARK/Ada

Last year, I started evaluating programming languages for a formally-verified operating system. I've been developing software for a while, but only recently began work in high integrity software development and formal methods. There are several operating system projects, like the SeL4 microkernel and the Muen separation kernel, that make use of formal verification. But I was interested in using a formally-verified language to write a general-purpose OS - an environment for abstracting the underlying hardware while acting as an arbiter for running the normal applications we're used to.

by Pat Rogers

From Ada to Platinum SPARK: A Case Study for Reusable Bounded Stacks

This blog entry describes the transformation of an Ada stack ADT into a completely proven SPARK implementation that relies on static verification instead of run-time enforcement of the abstraction’s semantics. We will prove that there are no reads of unassigned variables, no array indexing errors, no range errors, no numeric overflow errors, no attempts to push onto a full stack, no attempts to pop from an empty stack, that subprogram bodies implement their functional requirements, and so on. As a result, we get a maximally robust implementation of a reusable stack abstraction providing all the facilities required for production use.

#SPARK    #Ada    #Transitioning to SPARK   

by Pat Rogers

Making an RC Car with Ada and SPARK

As a demonstration for the use of Ada and SPARK in very small embedded targets, I created a remote-controlled (RC) car using Lego NXT Mindstorms motors and sensors but without using the Lego computer or Lego software. I used an ARM Cortex System-on-Chip board for the computer, and all the code -- the control program, the device drivers, everything -- is written in Ada. Over time, I’ve upgraded some of the code to be in SPARK. This blog post describes the hardware, the software, the SPARK upgrades, and the repositories that are used and created for this purpose.

#Ada    #SPARK    #Robotics   

by Quentin Ochem

Witnessing the Emergence of a New Ada Era

For nearly four decades the Ada language (in all versions of the standard) has been helping developers meet the most stringent reliability, safety and security requirements in the embedded market. As such, Ada has become an entrenched player in its historic A&D niche, where its technical advantages are recognized and well understood. Ada has also seen usage in other domains (such as medical and transportation) but its penetration has progressed at a somewhat slower pace. In these other markets Ada stands in particular contrast with the C language, which, although suffering from extremely well known and documented flaws, remains a strong and seldom questioned default choice. Or at least, when it’s not the choice, C is still the starting point (a gateway drug?) for alternatives such as C++ or Java, which in the end still lack the software engineering benefits that Ada embodies..

by Allan Ascanius , Per Dalgas Jakobsen

Winning DTU RoboCup with Ada and SPARK

The Danish Technical University has a yearly RoboCup where autonomous vehicles solve a number of challenges. We participated with RoadRunner, a 3D printed robot with wheel suspension, based on the BeagleBone Blue ARM-based board and the Pixy 1 camera with custom firmware enabling real-time line detection. Code is written in Ada and formally proved correct with SPARK at Silver level.

#Robotics    #Ada    #SPARK   

by Peter Chapin

Ten Years of Using SPARK to Build CubeSat Nano Satellites With Students

My colleague, Carl Brandon, and I have been running the CubeSat Laboratory at Vermont Technical College (VTC) for over ten years. During that time we have worked with nearly two dozen students on building and programming CubeSat nano satellites. Because of their general inexperience, and because of the high student turnover rate that is natural in an educational setting, our development process is often far from ideal. Here SPARK has been extremely valuable to us. What we lack in rigor of the development process we make up for in the rigor of the SPARK language and tools. In November 2013 we launched a low Earth orbiting CubeSat. The launch vehicle contained 13 other university built CubeSats. Most were never heard from. One worked for a few months. Ours worked for two years until it reentered Earth's atmosphere as planned in November 2015.

#SPARK    #Space    #Education    #Safety   

by Yannick Moy

Two Days Dedicated to Sound Static Analysis for Security

​AdaCore has been working with CEA, Inria and NIST to organize a two-days event dedicated to sound static analysis techniques and tools, and how they are used to increase the security of software-based systems. The program gathers top-notch experts in the field, from industry, government agencies and research institutes, around the three themes of analysis of legacy code, use in new developments and accountable software quality. Here is why it is worth attending.

#SPARK    #Frama-C    #Security    #Formal Methods    #Static Analysis   

by J. German Rivera

Make with Ada 2017- A "Swiss Army Knife" Watch

SummaryThe Hexiwear is an IoT wearable development board that has two NXP Kinetis microcontrollers. One is a K64F (Cortex-M4 core) for running the main embedded application software. The other one is a KW40 (Cortex M0+ core) for running a wireless connectivity stack (e.g., Bluetooth BLE or Thread). The Hexiwear board also has a rich set of peripherals, including OLED display, accelerometer, magnetometer, gryroscope, pressure sensor, temperature sensor and heart-rate sensor. This blog article describes the development of a "Swiss Army Knife" watch on the Hexiwear platform. It is a bare-metal embedded application developed 100% in Ada 2012, from the lowest level device drivers all the way up to the application-specific code, for the Hexiwear's K64F microcontroller. I developed Ada drivers for Hexiwear-specific peripherals from scratch, as they were not supported by AdaCore's Ada drivers library. Also, since I wanted to use the GNAT GPL 2017 Ada compiler but the GNAT GPL distribution did not include a port of the Ada Runtime for the Hexiwear board, I also had to port the GNAT GPL 2017 Ada runtime to the Hexiwear. All this application-independent code can be leveraged by anyone interested in developing Ada applications for the Hexiwear wearable device.

by Jonas Attertun

Make with Ada 2017: Brushless DC Motor Controller

This project involves the design of a software platform that provides a good basis when developing motor controllers for brushless DC motors (BLDC/PMSM). It consist of a basic but clean and readable implementation of a sensored field oriented control algorithm. Included is a logging feature that will simplify development and allows users to visualize what is happening. The project shows that Ada successfully can be used for a bare-metal project that requires fast execution.

#Makers    #MakewithAda    #STM32    #Embedded   

by Yannick Moy

Applied Formal Logic: Searching in Strings

A friend pointed me to recent posts by Tommy M. McGuire, in which he describes how Frama-C can be used to functionally prove a brute force version of string search, and to find a previously unknown bug in a faster version of string search called quick search. Frama-C and SPARK share similar history, techniques and goals. So it was tempting to redo the same proofs on equivalent code in SPARK, and completing them with a functional proof of the fixed version of quick search. This is what I'll present in this post.

#Dev Projects    #Formal Verification    #SPARK   

by Rob Tice

The Adaroombot Project

The Adaroombot project consists of an iRobot CreateⓇ 2 and Ada running on a Raspberry Pi with a Linux OS. This is a great Intro-to-Ada project as it focuses on a control algorithm and a simple serial communications protocol. The iRobot CreateⓇ 2 platform was originally design for STEM education and has great documentation and support - making it very easy to create a control application using Ada. This blog looks at the creation of the project and some cool features of Ada that were learned along the way.

#Raspberry Pi    #ARM    #Linux    #Ada    #Roomba   

by Yannick Moy

Research Corner - FLOSS Glider Software in SPARK

Two years ago, we redeveloped the code of a small quadcopter called Crazyflie in SPARK, as a proof-of-concept to show it was possible to prove absence of run-time errors (no buffer overflows, not division by zero, etc.) on such code. The researchers Martin Becker and Emanuel Regnath have raised the bar by developing the code for the autopilot of a small glider in SPARK in three months only. Their paper and slides are available, and they have released their code as FLOSS for others to use/modify/enhance!

#Formal Verification    #Dev Projects    #SPARK   

by Jorge Real

Writing on Air

While searching for motivating projects for students of the Real-Time Systems course here at Universitat Politècnica de València, we found a curious device that produces a fascinating effect. It holds a 12 cm bar from its bottom and makes it swing, like an upside-down pendulum, at a frequency of nearly 9 Hz. The free end of the bar holds a row of eight LEDs. With careful and timely switching of those LEDs, and due to visual persistence, it creates the illusion of text... floating in the air!

#STM32    #Ravenscar    #Ada    #Makers    #Embedded Development   

by Yannick Moy

Verified, Trustworthy Code with SPARK and Frama-C

Last week, a few of us at AdaCore have attended a one-day workshop organized at Thales Research and Technologies, around the topic of "Verified, trustworthy code - formal verification of software". Attendees from many different branches of Thales (avionics, railway, security, networks) were given an overview of the state-of-practice in formal verification of software, focused on two technologies: the SPARK technology that we develop at AdaCore for programs in Ada, and the Frama-C technology developed at CEA research labs for programs in C. The most interesting part of the day was the feedback given by three operational teams who have experimented during a few months with either SPARK (two teams) or Frama-C (one team). The lessons learned by first-time adopters of such technologies are quite valuable.

#SPARK    #Formal Methods   

by Florian Schanda

SPARKSMT - An SMTLIB Processing Tool Written in SPARK - Part I

Today I will write the first article in a short series about the development of an SMTLIB processing tool in SPARK. Instead of focusing on features, I intend to focus on the how I have proved absence of run-time errors in the name table and lexer. I had two objectives: show absence of run-time errors, and do not write useless defensive code. Today's blog will be about the name table, a data structure found in many compilers that can map strings to a unique integer and back. The next blog post will talk about the lexical analyzer.

#Dev Projects    #Formal Verification    #SPARK   

by Yannick Moy

SPARKSkein: From tour-de-force to run-of-the-mill Formal Verification

In 2010, Rod Chapman released an implementation in SPARK of the Skein cryptographic hash algorithm, and he proved that this implementation was free of run-time errors. That was a substantial effort with the previous version of the SPARK technology. We have recently translated the code of SPARKSkein from SPARK 2005 to SPARK 2014, and used GNATprove to prove absence of run-time errors in the translated program. The difference between the two technologies is striking. The heroic effort that Rod put in the formal verification of the initial version of SPARKSkein could now be duplicated with modest effort and modest knowledge of the technology, thanks to the much greater proof automation that the SPARK 2014 technology provides, as well as various features that lower the need to provide supporting specifications, most notably contracts on internal subprograms and loop invariants.

#Dev Projects    #Formal Verification    #SPARK   

by Emma Adby

Verification on Ada code with Static and Dynamic Code Analysis - Webinar

One of the main challenges to get certification in Ada projects is the achievement of 100% code coverage but in most projects an amount of more than 95% structural coverage is hard to achieve. What can you do with the last 5% of code that can't be covered? DO-178C for example, provides a framework for the integration of various techniques in the development process to solve the problem. In this webinar you learn how static analysis and dynamic testing can help complete analysis for pieces of code that are not covered.

#CodePeer    #Code Coverage    #Dynamic Analysis    #Static Analysis    #DO-178    #DO-178C   

by Olivier Ramonat

AdaCore Releases GNAT Pro 7.3, QGen 1.0 and GNATdashboard 1.0

February saw the annual customer release of a number of important products. This is no mean task when you consider the fact that GNAT Pro is available on over 50 platforms and supports over 150 runtime profiles (ranging from Full Ada Support to the very restricted Zero Footprint Profile suitable for safety-critical development). All in all, from the branching of the preview version to the customer release it takes us nearly 4 months to package everything up! Quality is assured through the internally developed AdaCore Factory.

#GNAT Pro    #SPARK Pro    #GPS    #GNATbench    #GNATdashboard    #Ada    #AdaCore Factory    #CodePeer    #QGen