AdaCore Blog

6 entries tagged with #Dev Projects

by Yannick Moy

Applied Formal Logic: Searching in Strings

A friend pointed me to recent posts by Tommy M. McGuire, in which he describes how Frama-C can be used to functionally prove a brute force version of string search, and to find a previously unknown bug in a faster version of string search called quick search. Frama-C and SPARK share similar history, techniques and goals. So it was tempting to redo the same proofs on equivalent code in SPARK, and completing them with a functional proof of the fixed version of quick search. This is what I'll present in this post.

#Dev Projects    #Formal Verification    #SPARK   

by Yannick Moy

Research Corner - FLOSS Glider Software in SPARK

Two years ago, we redeveloped the code of a small quadcopter called Crazyflie in SPARK, as a proof-of-concept to show it was possible to prove absence of run-time errors (no buffer overflows, not division by zero, etc.) on such code. The researchers Martin Becker and Emanuel Regnath have raised the bar by developing the code for the autopilot of a small glider in SPARK in three months only. Their paper and slides are available, and they have released their code as FLOSS for others to use/modify/enhance!

#Formal Verification    #Dev Projects    #SPARK   

by Yannick Moy

Two Projects to Compute Stats on Analysis Results

Two projects by Daniel King and Martin Becker facilitate the analysis of GNATprove results by exporting the results (either from the log or from the generated JSON files) to either Excel or JSON/text.

#Dev Projects    #Open Source    #SPARK   

by Florian Schanda

SPARKSMT - An SMTLIB Processing Tool Written in SPARK - Part I

Today I will write the first article in a short series about the development of an SMTLIB processing tool in SPARK. Instead of focusing on features, I intend to focus on the how I have proved absence of run-time errors in the name table and lexer. I had two objectives: show absence of run-time errors, and do not write useless defensive code. Today's blog will be about the name table, a data structure found in many compilers that can map strings to a unique integer and back. The next blog post will talk about the lexical analyzer.

#Dev Projects    #Formal Verification    #SPARK   

by Yannick Moy

SPARKSkein: From tour-de-force to run-of-the-mill Formal Verification

In 2010, Rod Chapman released an implementation in SPARK of the Skein cryptographic hash algorithm, and he proved that this implementation was free of run-time errors. That was a substantial effort with the previous version of the SPARK technology. We have recently translated the code of SPARKSkein from SPARK 2005 to SPARK 2014, and used GNATprove to prove absence of run-time errors in the translated program. The difference between the two technologies is striking. The heroic effort that Rod put in the formal verification of the initial version of SPARKSkein could now be duplicated with modest effort and modest knowledge of the technology, thanks to the much greater proof automation that the SPARK 2014 technology provides, as well as various features that lower the need to provide supporting specifications, most notably contracts on internal subprograms and loop invariants.

#Dev Projects    #Formal Verification    #SPARK   

by Tristan Gingold, Yannick Moy

Tetris in SPARK on ARM Cortex M4

Tetris is a well-known game from the 80's, which has been ported in many versions to all game platforms since then. There are even versions of Tetris written in Ada. But there was no version of Tetris written in SPARK, so we've repaired that injustice. Also, there was no version of Tetris for the Atmel SAM4S ARM processor, another injustice we've repaired.

#SPARK    #ARM