
Focused Certification of an Industrial Compilation and
Static Verification Toolchain ?

Zhi Zhang1, Robby1, John Hatcliff1, Yannick Moy2, Pierre Courtieu3

1 Kansas State University
{zhangzhi,robby,hatcliff}@ksu.edu

2 AdaCore
moy@adacore.com

3 Conservatoire National des Arts et Métiers
pierre.courtieu@cnam.fr

Abstract. SPARK 2014 is a subset of the Ada 2012 programming language that
is supported by the GNAT compilation toolchain and multiple open source static
analysis and verification tools. These tools can be used to verify that a SPARK
2014 program does not raise language-defined run-time exceptions and that it
complies with formal specifications expressed as subprogram contracts. The re-
sults of analyses at source code level are valid for the final executable only if it
can be shown that compilation/verification tools comply with a common deter-
ministic programming language semantics.
In this paper, we present: (a) a mechanized formal semantics for a large subset
of SPARK 2014, (b) an architecture for creating certified/certifying analysis and
verification tools for SPARK, and (c) tools and mechanized proofs that instan-
tiate that architecture to demonstrate that SPARK-relevant Ada run-time checks
inserted by the GNAT compiler are correct; this includes mechanized proofs of
correctness for abstract interpretation-based static analyses that are used to certify
correctness of GNAT run-time check optimizations.
A by-product of this work is a substantial amount of open source infrastructure
that others in academia and industry can use to develop mechanized semantics,
and mechanically verified correctness proofs for analyzers/verifiers for realistic
programming languages.

1 Introduction

SPARK is a subset of the Ada programming language targeted at safety- and security-
critical applications. It builds on the strengths of Ada for creating highly reliable and
long-lived software. SPARK restrictions ensure that the behavior of a SPARK program
is unambiguously defined and simple enough that formal verification tools can automat-
ically check the conformance of a program to its software-contract-based specification.
The SPARK language and toolset for formal verification have been applied over many
years to on-board aircraft systems, control systems, cryptographic systems, and rail
systems [1, 15]. The latest version – SPARK 2014 [12], builds on the new specification
features added in Ada 2012 [2]. One consequence of the new specification foundation
is that SPARK contracts are no longer phrased in Ada comments understood only by
the SPARK tools, but the formal specifications are phrased in Ada 2012 metadata con-
structs that can be understood by a much wider class of tools (including the GNAT
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compiler) and they have an execution semantics. The definition of the SPARK 2014
language subset is motivated by the simplicity and feasibility of formal analysis and the
need for an unambiguous semantics.

Static analysis tools are available that provide flow analysis, symbolic execution
and proof of SPARK programs. The industrial tool GNATprove4 co-developed by Al-
tran and AdaCore performs flow analysis to check correct access to data in the program
(correct access to global variables as specified in data and information flow contracts
and correct access to initialized data) and uses deductive methods to demonstrate that
the program is free from run-time errors and that the specified contracts are correctly
implemented. The academic tool Bakar Kiasan [3] developed by Kansas State Uni-
versity allows executing symbolically a SPARK program with or without contracts, to
detect possible run-time errors and contract violations, and in some cases also prove
that no such errors can occur.

Motivations: A major reason for using SPARK for developing critical software is the
ability to prove statically that no language specified run-time errors, such as arithmetic
overflow, buffer overflow and division-by-zero, can occur.5 Besides the additional confi-
dence in the software that this result brings, it can be used in some certification domains
to lower the verification effort in some other areas like testing. For example, the most
recent version DO-178C of the avionics certification standard allow using both tests or
proofs as acceptable verification methods [13]. It is also commonly used as an argu-
ment to justify the suppression of run-time checks in the final executable, typically for
increasing execution speed.

The absence of run-time errors can be guaranteed only relative to the correctness of
the compiler and analyzers used. Although correctness is not proved for tools used in
practice on typical industrial projects, there is a special process known as tool qualifica-
tion in safety-critical industry which aims at giving sufficient confidence that the tools
behave correctly [9].

A critical element for the qualification of both the GNAT compiler (the most widely
used Ada compiler) and the GNATprove analyzer, both developed by AdaCore, is that
they correctly interpret the semantics of SPARK with respect to the placement of run-
time checks. The compiler works by producing first a semantically analyzed abstract
syntax tree (AST) of the program, decorated with flags that indicate positions in the
AST where run-time checks should be inserted. This AST is then expanded into a lower
level representation with explicit run-time checking code. The input of GNATprove is
based on the same AST used for compilation (using the same compilation front-end),
decorated with the same flags that, in this case, indicate where absence of a particular
run-time error should be proved. Because the compiler and the analyzer share the code
that inserts decorations in the AST, this code is much less likely to miss checks, and
some effort has been invested in optimizing out useless checks.

Hence, the compiler and analyzers all share the AST produced by the front-end,
with decorations indicating where run-time checks should be inserted. However, we
have discovered various situations where decorations were missing, which ultimately
led to a correction of the GNAT front-end. The last such occasion was the implemen-

4 http://www.adacore.com/sparkpro
5 Language-specified run-time errors that are relevant for all programs in the language can be

contrasted with application-specific run-time errors that correspond to violations of a pro-
gram’s application-specific requirements. Our work addresses the former notion.
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tation of a Tetris game in SPARK for a demo at a customer gathering6: after proving
that the program was free of run-time errors, the first test on the actual board stopped
unexpectedly due to a range check failing during execution. There was indeed a pos-
sible check failure in the code (later corrected) on a new attribute recently introduced
in SPARK, which was not detected during proof because the corresponding decoration
was not set by GNAT.

Thus, it is of critical importance to be able to guarantee that all check decorations
are set on the AST produced by the front-end, as defined in SPARK 2014 language
reference semantics. That is, instead of assuming that GNAT correctly decorates AST
with the required run-time checks, this paper presents our work to ensure that is indeed
the case.

Contributions: To address the issues described above, and to enable a long-term re-
search program investigating the use of mechanized semantics and proofs for SPARK
20147, we have developed multiple proof infrastructure components in the Coq proof
assistant. We have created certified8 SPARK run-time check generators with a small
trust-base footprint that can be used to substantiate the correctness of the industrial
SPARK 2014 toolchain. Our contributions include:

– The formalization of the language (dynamic/evaluation) semantics for a core subset
of the SPARK 2014 language using the Coq proof assistant [20] (Section 2.1). The
core language subset includes scalar subtypes and derived types, array types, record
types, procedure calls, and locally defined subprograms; a large class of programs
can be desugared to this core subset, thus, enabling evaluations on realistic SPARK
systems to some extent. The formal semantics specification represents our trust-
base (along with Coq, which itself has been highly-regarded as a proof system that
has a smaller trust-base compared to others); the specification is trustable because,
for example, it has been manually inspected by leading experts in SPARK/Ada both
in industry and academia. Hence, it can be considered as the reference SPARK 2014
formal semantics.

– An implementation of a certified run-time check generator for the core language
(Section 2.2); that is, the implementation is proved to be consistent with the ref-
erence semantics with respect to the class of errors that can arise in the language
subset (such as overflow checks, range checks, array index checks and division by
zero checks). The consistency guarantees that if language-defined run-time checks
generated by the certified implementation do not fail, a program cannot “go wrong”
according to the SPARK formal semantics. The generated checks by the implemen-
tation represents the baseline as the most conservative run-time check set (i.e., a
larger set is unnecessary and could even be problematic).

– An implementation of a certified run-time check optimizer (Section 2.3). The op-
timization is needed because the GNAT frontend employs various optimizations
to reduce the set of run-time checks that it generates for run-time efficiency sake.
The certified optimizer uses an abstract interpretation-based [7] interval analysis; it

6 http://blog.adacore.com/tetris-in-spark-on-arm-cortex-m4
7 By “mechanized”, we mean the construction of formal definitions (of semantics, translations,

analysis, etc.) and formal proofs of associated properties in a proof assistant that enables cor-
rectness to be checked automatically by the proof assistant.

8 Certified here means that there are formal mathematical artifacts (such as machine-checked
proofs) that serve as rigorous evidence that an implementation is consistent with its specifica-
tion [5].
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generates a smaller set of run-time checks compared to the ones produced by the
GNAT frontend, while still being consistent.

– An implementation of a conformance checker as a back-end of the GNAT front-
end (including, e.g., a SPARK program translator to fully resolved SPARK ASTs
in Coq) that automates evaluations of the GNAT frontend against the certified run-
time check generators (Section 2.4). This essentially turns the industrial GNAT
frontend into a certifying9 tool with respect to introduction of run-time error check
decorations. This increases the confidence in the GNAT compiler back-end that
embeds run-time assertion checking when it emits machine code for testing, as well
as in the GNATprove verifier that uses the run-time check decorations to determine
what verification conditions to generate.

– The evaluation of the GNAT front-end against both the certified run-time check
generators (Section 2.4). We evaluated that: (1) the set of run-time check decora-
tions inserted by the GNAT front-end is in fact a subset of the decorations gen-
erated by the unoptimized run-time check generator, while (2) it is a superset of
the decorations generated by the optimized run-time check generator. In addition
to confirming the correctness of the GNAT front-end run-time check decoration
generator, the evaluation exposed some subtle differences in the run-time checks
generated by the GNAT frontend, as well as exposing further optimizations that
can be done by the frontend while still preserving its correctness property.
While our research work includes making an industrial impact on SPARK run-time

error checking, the significant investments reflected in our contributions (e.g., over
25,000 lines of Coq proofs and reusable AST, translations, and semantics infrastruc-
ture), enable much broader research and engineering. All of the Coq artifacts and as-
sociated tools created in this work are publicly available under an EPL open source li-
cense10. The formalized SPARK semantics and certified run-time check generators can
be leveraged to develop certified/certifying program analyzers (e.g., a contract verifier)
and translators (e.g., a SPARK to CompCert [19] intermediate representation translator
to benefit from CompCert’s certified translation toolchain down to machine-code level).
In general, our approach of using both unoptimized and optimized certified run-time
check generators to turn an untrusted (industrial) implementation into a certifying tool
can be adopted to other programming languages/development tools for critical systems
that ensure absence of run-time errors.

2 Technical Approach

Figure 1 gives an architectural overview of our approach; the subsequent sub-sections
describe each of the components. Due to space constraints, we only highlight some
limited language features sufficient to illustrate our approach (see the publicly available
artifacts for the complete definitions).

2.1 Core SPARK 2014 Mechanized Semantics

As stated previously, one main component of our approach is a formal language ref-
erence semantics of core SPARK 2014 mechanized using Coq [20]; Coq allows for

9 Certifying here means that the tool generates evidence testifying that it is in fact consistent
with its specification for a particular use of the tool.

10 http://santoslab.org/pub/TR/SAnToS-TR2016-03-11/
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Fig. 1. Architectural Overview

specifying, implementing, and proving programming language related properties. We
chose Coq due to the fact that it has a relatively small core which has been vetted by
many experts in the programming language community (small trust-base).

The core language includes features typically found in imperative languages such
as arrays, records, and procedure calls, as well as SPARK-specific structures, such as
nested procedures and subtypes. One major difference between SPARK and other pro-
gramming languages (e.g., C) is that verification for absence of run-time errors is re-
quired by the semantics of the language itself. Thus, the constraints associated with the
required run-time checks are specified within the operational semantics rules for the
language; that is, as the rules are used to “evaluate” the program, the semantics of the
run-time checks are enforced at appropriate points in the program, and the evaluation
will terminate with a run-time error message as soon as one of its run-time checks fails.

The formalization includes: (a) a SPARK AST representation (symbols and types
are fully resolved), and (b) a rule-based “big step” operational semantics for SPARK
(including state/value representations, expression evaluation, and statement execution).

SPARK AST Representation: SPARK ASTs are represented using inductive type defini-
tions in Coq, where each constructor takes as an argument a number used to uniquely
identify and reference the particular AST node being constructed. The AST numbers
are useful as keys for symbol tables, type tables, and mappings from source code line/-
column positions. The following is an excerpt of the inductive definition for expressions
Inductive exp: Type := | BinOp: astnum→ binOp→ exp→ exp→ exp | ...

where BinOp is the constructor for binary expressions that takes as arguments a unique
AST number astnum, a symbol for the particular operator being used (e.g., Add, Sub,
Mul, etc..), and the expressions for the left and right arguments to the operator. The last
exp is the resulting type of the constructor (i.e., the constructor is building an exp).

SPARK supports range constrained integer types that are useful as array index types;
that is, the range constraints are used to determine in-bounds/out-of-bounds array op-
erations (instead of using a special .length field such as in Java). Range constrained
types can be declared using either a subtype declaration (e.g., subtype T10 is Integer

range 1 .. 10), a derived type definition (e.g., type U10 is new Integer range
1 .. 10), or an integer type definition (e.g., type W10 is range 1 .. 10); they
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semantically differ in that the last two introduce a new type, while the first one does
not; the differences have to be taken into account in the formalization. This illustrates
the non-trivial number of language features that one has to cover when formalizing a
real programming language that can be directly leveraged for developing high-integrity
industrial tools.
State/Value: Due to the semantics enforcing the run-time checks, evaluating either an
expression or a statement may produce an error state when the run-time check fails
(otherwise a value or a state is produced, respectively). The following definition defines
a generic return type Ret:
Inductive Ret (A: Type): Type := | OK: A→ Ret A | RTE: errorType→ Ret A.

Type parameter A is either the value/state type, and errorType is the run-time error
state type (e.g., division by zero, overflow, out of range).
Expression Semantics: The mechanized big-step operational semantics definition con-
sists of an inductively defined type with constructors corresponding to the individual
“rules” of the semantics. Intuitively, each constructor takes as arguments: (a) Coq ob-
jects representing operational semantics derivations corresponding to evaluation of ex-
pression/statement sub-components, and (b) Coq objects representing derivations es-
tablishing that some necessary “side conditions” hold. Each expression rule relates a
symbol table, the current state, and the expression to be evaluated, to a return value.
The expression rules are complicated by the fact that sub-expression evaluation can
produce an error state, as follows.
Inductive evalExp: symTab→ state→ exp→ Ret value→ Prop :=
| EvalBinOpE1_RTE: ∀ st s e1 msg n op e2, (* e1 returns error *)

evalExp st s e1 (RTE msg)→ evalExp st s (BinOp n op e1 e2) (RTE msg)
| EvalBinOpE2_RTE: ∀ st s e1 v1 e2 msg n op, (* e2 returns error *)

evalExp st s e1 (OK v1)→ evalExp st s e2 (RTE msg)→
evalExp st s (BinOp n op e1 e2) (RTE msg)

| EvalBinOp: ∀ st s e1 v1 e2 v2 op v n, (* no error from e1 & e2 *)
evalExp st s e1 (OK v1)→ evalExp st s e2 (OK v2)→ evalBinOp op v1 v2 v→
evalExp st s (BinOp n op e1 e2) v

...
Inductive evalBinOp: binOp→ value→ value→ Ret value→ Prop :=
| CheckBinops: ∀ op v1 v2 v v’, (* binop results in overflow *)

op = Add∨ op = Sub∨ op = Mul→ Denotational.binOp op v1 v2 = Some (Int v)→
overflowCheck v v’→ evalBinOp op v1 v2 v’

| CheckDivRTE: ∀ v1 v2, (* check for div by zero *)
divCheck v1 v2 (RTE DivByZero)→ evalBinOp Div (Int v1) (Int v2) (RTE DivByZero)

| CheckDiv: ∀ v1 v2 v v’, (* no div by zero, check result overflow *)
divCheck v1 v2 (OK (Int v))→ overflowCheck v v’→ evalBinOp Div (Int v1) (Int v2) v’

...

EvalBinOpE1_RTE specifies the evaluation of a binary expression (e1 op e2) where
the evaluation of e1 produces an error state (similarly, EvalBinOpE2_RTE for when
e2 fails). EvalBinOp specifies the situation where evaluations of both e1 and e2

produce operand values, which are then evaluated using evalBinOp; evalBinOp in-
corporates various run-time checks such as division by zero and overflow/underflow
by using divCheck and overflowCheck; divCheck produces a value if the sec-
ond operand is non-zero (otherwise, it produces the error state RTE DivByZero), and
overflowCheck produces a value if the given value fits within the (platform) integer
type value range (otherwise, it produces RTE Overflow). Run-time checks for other
language features such as array indexing are specified in the same spirit as the above.
Statement Semantics: Range checks are enforced during statement executions of, for
example, assignments and procedure calls. We describe the intuition behind statement
semantic rules using examples instead of verbosely listing the Coq specifications.
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For an assignment, a range check is enforced for its right hand side expression if the
left hand side expression’s type is a range constrained type. For example,
subtype MyInt is Integer range 1 .. 10; X: MyInt; ...; X := X + 1;

That is, X is a variable of type MyInt, which is defined as a subtype of Integer ranging
from 1 to 10. The assignment increments X by 1, as follows. First, X + 1 is evaluated;
if it returns a value (instead of an error state), the value is checked against the range of
MyInt before updating X.

For a procedure call, range checks are required for both input arguments and output
parameters if the types of input parameters and output arguments are range constrained
types because input arguments are assigned to the procedure input parameters, and out-
put parameters are assigned to the output arguments.

In general, there are three categories of run-time checks in the core SPARK subset:
(1) overflow (including underflow) run-time checks (for integer arithmetic operations),
(2) division by zero run-time checks (for modulus and division operations), and (3)
range run-time checks (for integer variable assignments, array assignments, array ac-
cesses, and procedure calls).
Evaluation: We designed the semantics rules including the specification of run-time
checks by referring to the SPARK [21] and Ada [17] reference manuals. The rules were
subsequently inspected and refined by various experts including SPARK/Ada designers
and developers. We then proved that our SPARK mechanized semantics enjoys a form
of type safety (Section 2.3), which guarantees, to some extent, its internal consistency.

2.2 Certified Run-Time Check Generator

Given a SPARK program, the GNAT compiler front-end builds the program fully-
resolved (symbol/type) AST decorated with flags that indicate the position and nature of
the run-time checks to be performed. When down-stream tools process the ASTs, they
interpret/transform the decorations. For example, a later phase of the GNAT compiler
replaces each decoration with an assertion AST representing code that implements the
corresponding run-time check. In contrast, the Why3 [22]-based GNATprove verifica-
tion tool uses the decorations to generate verification conditions. Both tools assume that
the run-time check decorations inserted by the GNAT compiler front-end are correct.

To formally capture the notion of decorating ASTs with run-time check information,
we implemented in Coq a run-time check decoration generator (RT-GEN in Figure 1)
whose consistency with the mechanized SPARK reference semantics was established
via a Coq proof. Hence, the correctness of RT-GEN is certified. To achieve this, a differ-
ent set of operational semantic rules is needed (called EVAL-RT) – one that “evaluates”
an AST with run-time check decorations and only enforces the checking semantics
where a decoration occurs. Then, one can prove that, for any program and for any
program initial state, EVAL-RT supplied with run-time check decorations generated by
RT-GEN produces exactly the same state as EVAL (i.e., the SPARK reference semantics).
EVAL-RT: is a modified EVAL that accepts AST-RT where run-time check decorations
are represented as tree attributes. For example, AST-RT expression is defined as follows.
Inductive expRT: Type :=
| BinOpRT: astnum→ binOp→ expRT→ expRT→ interiorChecks→ exteriorChecks→ expRT
...

The difference from AST is that two additional fields interiorChecks and exteriorChecks
are introduced; interiorChecks are intended for run-time checks associated with the
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binary operator (e.g., addition requires overflowCheck), while exteriorChecks are
checks associated with expression’s context (e.g., if the expression is used for array in-
dexing, then it should be range-checked against the array size). Once AST-RT is defined,
one can then define EVAL-RT that accepts AST-RT and enforces the explicitly listed run-
time checks (e.g., in interiorChecks and exteriorChecks), as illustrated below.
Inductive evalExpRT: symTabRT→ state→ expRT→ Ret value→ Prop :=
| EvalBinOpRT: ∀ st s e1 v1 e2 v2 ins op v n exs,

evalExpRT st s e1 (OK v1)→ evalExpRT st s e2 (OK v2)→ (* no error on e1, e2 *)
evalBinOpRTS ins op v1 v2 v→ (* process RT checks *)
evalExpRT st s (BinOpRT n op e1 e2 ins exs) v

...

evalBinOpRTS iterates over the run-time check decorations to enforce the interiorChecks
for a binary expression. The binary operation is performed if none of the run-time
checks produces an error state; otherwise, it returns the error state. (Note that enforce-
ment of exteriorChecks is not presented above as it involves arrays, which is not
presented due to space constraint.)
RT-GEN: translates AST to AST-RT. In developing RT-GEN, we first specified its behav-
ior declaratively as a Coq inductively defined relation (e.g., toExpRT below) between
AST to AST-RT (with the symbol table as an auxiliary component). Then, we imple-
mented the translation as a Coq function (e.g., toExpRTImpl).
Inductive toExpRT: symTab→ exp→ expRT→ Prop :=
| ToBinOpO: ∀ st op e1 e1RT e2 e2RT n, (* insert overflow checks on op result *)

op = Add∨ op = Sub∨ op = Mul → toExpRT st e1 e1RT → toExpRT st e2 e2RT →
toExpRT st (BinOp n op e1 e2) (BinOpRT n op e1RT e2RT [OverflowCheck] nil)

| ToBinOpDO: ∀ st e1 e1RT e2 e2RT n, (* Div: div by 0 + overflow *)
toExpRT st e1 e1RT → toExpRT st e2 e2RT →
toExpRT st (BinOp n Div e1 e2)

(BinOpRT n Div e1RT e2RT [DivCheck, OverflowCheck] nil)
...
Function toExpRTImpl(st:symTab)(e:exp): expRT :=...

As can be observed, ToBinOpO specifies that RT-GEN should generate (interior) OverflowCheck
for addition, substration, or multiplication, and both DivCheck and OverflowCheck

for division; toExpRT is implemented by toExpRTImpl using Coq’s programming
language features (like ML’s) which is extractable to OCaml to produce an executable.
Evaluation: To certify RT-GEN, we proved that its specification is consistent (sound and
complete) with respect to the SPARK mechanized semantics. For example, for expres-
sions, we proved the following consistency lemma:
Lemma toExpRTConsistent: ∀ e eRT st stRT s v,

toExpRT st e eRT→ toSymTabRT st stRT→ (evalExpRT stRT s eRT v↔ evalExp st s e v).

where toSymTabRT transforms symTab to symTabRT, which, among other things,
maps procedure names to their AST-RT. We then proved that the RT-GEN implemen-
tation is consistent with respect to its specification, for example:
Lemma toExpRTImplConsistent: ∀ e eRT st, toExpRTImpl st e = eRT↔ toExpRT st e eRT.

Therefore, the implementation is transitively consistent with respect to the SPARK se-
mantics (by transitivity of implication → /↔).

2.3 Certified Run-Time Check Optimizer

While RT-GEN generates a sufficient set of run-time checks, some of them may not be
necessary. In fact, the GNAT front-end uses optimization techniques to reduce the set
of run-time checks that it generates; in practice, we expect the set generated by GNAT
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to be a subset of the RT-GEN generated set (we confirmed through experiments that this
is indeed the case in Section 2.4). The question is then whether GNAT’s optimizations
are (certifiably) sound. Our approach to answer this is to have a certified optimizer (RT-
OPT) that reduces the run-time checks generated by RT-GEN. It is widely known that,
in general, an optimizer cannot actually ever be optimal (due to the halting problem).
Thus, the best we can hope for is to have RT-OPT reduce to the same (or even better,
i.e., smaller) set as GNAT’s (a smaller set implies that GNAT can be improved further);
Section 2.4 confirms that this is indeed the case through validation.

RT-OPT: transforms AST-RT to another AST-RT by removing some run-time checks
whose corresponding verification conditions (VCs) can be discharged; RT-OPT dis-
charges the VCs by employing a (certified) abstract interpretation [7] analysis with in-
terval numeric domain (Section 2.4 shows that RT-OPT is on par or better than GNAT’s
runtime-check optimizations). Similar to RT-GEN, we first specified RT-OPT as induc-
tively defined relation and then implemented it as a function. For expressions, RT-OPT
produces AST-RT along with the expression’s interval domain (if any) as follows:

Inductive optExp: symTabRT→ expRT→ (expRT * interval)→ Prop = ...
Function optExpImpl(st:symTabRT) (e:expRT): option(expRT * interval) = ...

where optExp is typeset in Figure 2 for readability. One invariant of RT-OPT is that in-
teger expression optimization should produce an interval that fits within the compilation
target platform-specific two’s complement integer range, which makes up the default
interval [INTMIN , INTMAX ]. Γ holds the abstract interpretation context such as symbol
table, etc. For notational convenience, interiorChecks and exteriorChecks are
not explicitly shown; EraseOverflowCheck and EraseDivCheck remove overflow and
division interiorChecks, respectively.

The INT1 rule in Figure 2 optimizes away the overflow check in the case of an integer
literal AST-RT n where n is within the platform’s integer range; a single-value interval
[n, n] is returned along with the optimized AST-RT (i.e., the tight single-value interval
allows for concrete interpretation). On the other hand, INT2 specifies the case where the
overflow check is kept whenever n is outside the range, thus, the default interval is
returned (in this case, an error message can be generated to notify the developer). ADD1

and ADD2 first try to optimize the two operands and compute the expression interval
bounds (i.e., [u, v]). ADD1 specifies the case where the bounds are within the platform’s
integer range, hence, the overflow check associated the binary operation can be safely
removed; otherwise, ADD2 specifies that run-time checks are preserved, and the resulting
interval is the platform’s integer range.

For division, four cases (DIV1-4) specify the different situations where division by
zero and/or operation overflow (i.e., when dividing INTMIN by -1) could occur; in all
the cases, the resulting interval is specified by divInterval that does case analysis on the
positivity/negativity of the interval operands. For example, (5) specifies the case where
both of the operand intervals [v1, w1] and [v2, w2] are positive (i.e, the low bounds v1
and v2 are positive); in this case, the resulting interval is [v1/w2, w1/v2] where its low
bound v1/w2 is computed by dividing the smallest value of the first operand’s interval
with the largest value of the second operand’s interval, and its high bound w1/v2 is
computed by dividing the largest value of the first operand’s interval with the smallest
value of the second operand’s interval. The divInterval specification illustrates a slice of
the RT-OPT’s complexity for computing tight intervals in order to optimize away many
run-time checks; rest assured however that they are proven to be correct in Coq.
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n ∈ [INTMIN , INTMAX ]

Γ ` optExp(n)=(EraseOverflowCheck(n), [n,n])
INT1

n /∈ [INTMIN , INTMAX ]

Γ ` optExp(n)=(n, [INTMIN , INTMAX ])
INT2

Γ ` optExp(ei)=(e′i,[vi, wi]), i ∈ {1, 2} v=v1+v2 w=w1+w2 {v,w}⊆ [INTMIN ,INTMAX ]

Γ ` optExp(e1 + e2)=(EraseOverflowCheck(e′
1 + e′

2 ), [v ,w ])
ADD1

Γ ` optExp(ei)=(e′i,[vi, wi]), i ∈ {1, 2} v=v1+v2 w=w1+w2 {v,w} 6⊆ [INTMIN ,INTMAX ]

Γ ` optExp(e1 + e2)=(e′
1 + e′

2 , [max(v , INTMIN ),min(w , INTMAX )])
ADD2

Γ ` optExp(ei)=(e′i, [vi, wi]), i ∈ {1, 2} 0 /∈ [v2 , w2 ] INTMIN /∈ [v1 , w1 ] ∨ −1 /∈ [v2 , w2 ]

Γ ` optExp(e1/e2)=(EraseOverflowCheck(EraseDivCheck(e′
1/e′

2 )), divInterval(v1 ,w1 , v2 ,w2 ))
DIV1

Γ ` optExp(ei)=(e′i, [vi, wi]), i ∈ {1, 2} 0 /∈ [v2 , w2 ] INTMIN ∈ [v1 , w1 ] ∧ −1 ∈ [v2 , w2 ]

Γ ` optExp(e1/e2)=(EraseDivCheck(e′
1/e′

2 ), divInterval(v1 ,w1 , v2 ,w2 ))
DIV2

Γ ` optExp(ei)=(e′i, [vi, wi]), i ∈ {1, 2} 0 ∈ [v2 , w2 ] INTMIN /∈ [v1 , w1 ] ∨ −1 /∈ [v2 , w2 ]

Γ ` optExp(e1/e2)=(EraseOverflowCheck(e′
1/e′

2 ), divInterval(v1 ,w1 , v2 ,w2 ))
DIV3

Γ ` optExp(ei)=(e′i, [vi, wi]), i ∈ {1, 2} 0 ∈ [v2 , w2 ] INTMIN ∈ [v1 , w1 ] ∧ −1 ∈ [v2 , w2 ]

Γ ` optExp(e1/e2)=(e′
1/e′

2 , divInterval(v1 ,w1 , v2 ,w2 ))
DIV4

Γ (x) = τINT [[τINT ]] = [τMIN , τMAX ]

Γ ` optExp(x)=(x, [max(τMIN , INTMIN ),min(τMAX , INTMAX )])
VARINT

divInterval
(v1, w1, v2, w2) =



[w1/v2,min(v1/w2, INTMAX)], if w2 < 0 ∧ w1 < 0 (1)

[w1/w2, v1/v2], if w2 < 0 ∧ v1 > 0 (2)

[w1/w2,min(v1/w2, INTMAX)], if w2 < 0 ∧ p1 (3)

[v1/v2, w1/w2], if v2 > 0 ∧ w1 < 0 (4)

[v1/w2, w1/v2], if v2 > 0 ∧ v1 > 0 (5)

[v1/v2, w1/v2], if v2 > 0 ∧ p1 (6)

[v1,min(|v1|, INTMAX)], if p2 ∧ w1 < 0 (7)

[−w1, w1], if p2 ∧ v1 > 0 (8)

[−max(|v1|, |w1|),min(max(|v1|, |w1|), INTMAX)], if p1 ∧ p2 (9)

where pi = ¬(wi < 0 ∨ vi > 0), i ∈ {1, 2}

Fig. 2. RT-OPT Specification for Expression (excerpts)

Lastly, the VARINT rule specifies that an integer variable reference’s interval is its
integer type range intersected by the platform’s integer range (i.e., leveraging the RT-
OPT invariant that all computed integer values are always checked for overflows).
Well-Typed State: VARINT assumes that it can use the variable’s integer type range for
the variable reference’s interval. This holds if all values in the state are well-typed. To
discharge this assumption, we first specified the meaning for a state to be well-typed:
Inductive wellTypedState: symTabRT→ state→ Prop:=
| WellTypedState: ∀ stRT s,

(∀ x v, fetch x s = Some v→ ∃ t, lookup stRT x = Some t∧ wellTypedValue t v)→
wellTypedState stRT s.

then proved that EVAL-RT specification (hence, by virtue of consistency transitivity,
EVAL specification) preserve state well-typed-ness, for example, for EVAL-RT statement
semantics that may incur state changes, we proved the following preservation lemma:
Lemma wellTypedStatePreservation: ∀ s s’ stmt stRT,
wellTypedState stRT s→ evalStmtRT stRT s stmt s’→ wellTypedState stRT s’.

Evaluation: To certify RT-OPT, we proceeded similarly to RT-GEN certification (albeit
much more complex to prove); that is, we proved that RT-OPT specification is consis-
tent with respect to the RT-GEN specification described in Section 2.2, and that RT-OPT
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implementation is consistent with respect to its specification. Therefore, the implemen-
tation is transitively consistent with respect to the SPARK mechanized semantics.

2.4 Certifying GNAT RT Check Generator

Now that we have RT-GEN and RT-OPT, we can implement a conformance checker that
can establish that, for a SPARK 2014 program p, the run-time check decoration inser-
tion of the GNAT front-end for p conforms to the mechanized SPARK 2014 reference
semantics. Specifically, for program p, the GNAT front-end generates a fully resolved
AST with run-time check decorations, and we developed a tool called Jago that takes
the GNAT AST and produces: (1) a Coq object of type AST (ast), where the GNAT run-
time decorations are erased, and (2) a Coq object of type AST-RT (ast-rt-gnat), where
the GNAT run-time decorations are preserved (Jago also applies some program trans-
formations to desugar language constructs that lie outside of the language subset to fall
within the language subset). Then, applying RT-GEN on ast produces ast-rt-gen, and
applying RT-OPT on ast-rt-gen produces ast-rt-opt, both of which are of type AST-RT.

To automate the actual AST conformance check, we implemented a tool in Coq –
⊆, that given two objects of type AST-RT, it determines whether the set of run-time
checks in the first object is a subset of the second’s. Thus, GNAT run-time decora-
tion insertion on program p is conformant to the SPARK 2014 reference semantics if
ast-rt-opt ⊆ ast-rt-gnat ⊆ ast-rt-gen. This toolchain essentially turns the GNAT front-
end into a certifying run-time check decoration generator; that is, for a given program
p, it generates evidence of “conformity to SPARK 2014 reference semantics for p’s
run-time check decorations” that is automatically machine-checked by certified tools.

Note that this does not guarantee that the actual binary run-time check assertion
code for p subsequently generated by the GNAT compiler back-end is correct; it sim-
ply means that decorations indicating what assertions should be produced is correct.
This, alone has significant value because, for example, it goes a long way toward es-
tablishing the correspondence between GNAT and GNATprove’s (as well as any other
SPARK backend tools’) treatment of run-time checks. Moreover, since there are only
three categories of run-time checks relevant for this language subset, since each of these
categories can be represented by a simple code pattern involving a few numerical com-
parisons, since the pattern itself can be easily inspected and tested, and since the gener-
ation of binary code for the pattern is reasonable straightforward and can also be easily
tested, one might argue that establishing the correctness of the decorations is one of the
most important steps in establishing trust in the overall end-to-end production of the
executable run-time checks.

3 Evaluation: Certifying GNAT

We evaluated GNAT according to the methodology described in Section 2.4 on a collec-
tion of programs. Table 1 presents the experiment data for various program units (pack-
ages/procedures) from the test programs. The first two SPARK programs come from
the Ada Conformity Assessment Test Suite (ACATS) [16] that all Ada compilers must
pass. SPARKSkein is an implementation of the Skein hash algorithm in SPARK, which
was proved free of run-time errors [4]. Tetris is the motivating example described in
Section 1, which is implemented partly in SPARK and partly in Ada (we only checked
the SPARK part). All other examples are representative code from AdaCore, Altran
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Base GNAT Opt DiffUnit LoC D O R T D O R T D O R T D O R T
ACATS c53007a 143 – 16 – 16 – 14 – 14 – 14 – 14 – – – –
ACATS c55c02b 74 – 2 5 7 – 2 – 2 – 2 – 2 – – – –
array record package 54 1 11 2 14 1 11 2 14 1 11 2 14 – – – –
array subtype index 12 – 1 1 2 – 1 – 1 – 1 1 2 – – +1 +1
arrayrecord 43 1 9 2 12 1 9 – 10 1 9 – 10 – – – –
assign subtype var 10 – 1 1 2 – 1 – 1 – 1 1 2 – – +1 +1
binary search 40 1 6 12 19 1 – 4 5 – – 4 4 -1 – – -1
bounded in out 17 – 1 4 5 – – 3 3 – – 4 4 – – +1 +1
dependence test suite 01 164 – 2 – 2 – 2 – 2 – 2 – 2 – – – –
dependence test suite 02 249 – 15 – 15 – 15 – 15 – 15 – 15 – – – –
division by non zero 12 1 2 1 4 1 – – 1 – – – – -1 – – -1
faultintegrator 25 – 2 – 2 – 2 – 2 – 2 – 2 – – – –
gcd 18 1 3 – 4 1 3 – 4 1 3 – 4 – – – –
linear div 21 – 3 – 3 – 3 – 3 – 3 – 3 – – – –
modulus 24 1 2 3 6 1 1 – 2 – 1 – 1 -1 – – -1
odd 14 1 2 – 3 1 1 – 2 – 1 – 1 -1 – – -1
p simple call 36 – 5 – 5 – 5 – 5 – 5 – 5 – – – –
prime 21 1 2 – 3 1 2 – 3 1 2 – 3 – – – –
quantifiertest 14 – 1 2 3 – 1 – 1 – 1 – 1 – – – –
SPARKSkein 646 7 94 246 347 7 58 29 94 – 52 25 77 -7 -6 -4 -17
sort 43 – 5 6 11 – 5 6 11 – 5 6 11 – – – –
Tetris 373 – 29 58 87 – – 25 25 – – 25 25 – – – –
the stack 42 – 4 6 10 – – 6 6 – – 6 6 – – – –
the stack praxis 35 – 2 4 6 – – 4 4 – – 4 4 – – – –
two way sort 49 – 4 17 21 – – 4 4 – – 4 4 – – – –

Table 1. Experiment Data (excerpts)

and our own designed benchmark covering the core language subset. For each unit,
LoC gives the line number of code. Base, GNAT and Opt give the number of run-time
checks in ast-rt-gen, ast-rt-gnat and ast-rt-opt respectively, and Diff represents the num-
ber of run-time checks in GNAT that differs from the ones in Opt. Dash (“–”) means
“none”; a negative number -n in Diff means that Opt removes n more run-time checks
than GNAT; and, a positive number +m means Opt has m more number of run-time
checks than GNAT “somehow”. Sub-column D gives the number of division by zero
run-time checks; O and R give the number of overflow run-time checks and range run-
time checks; and, T is the total number of run-time checks (i.e., D+O+R). RT-GEN and
RT-OPT run fast (within seconds) and the data are omitted here due to space constraints.

As can be observed from Table 1, the GNAT frontend is a solid tool for run-time
check generation/verification as most of its generated run-time checks match the cer-
tified RT-OPT. This is reasonable because our formalization captures the most com-
monly used run-time checks in SPARK and GNAT is quite mature after many years
of effort to improve it, as well as the effort to improve the GNATprove toolchain by
AdaCore and Altran (which drives some of the improvements in GNAT). However, RT-
OPT edges out GNAT in some cases, especially for SPARKSkein. One reason is that
GNAT does not take any advanced optimizations, for the division/modulus binary oper-
ator, it does not optimize even with constant; for example, GNAT generates division by
zero check for the expression (R + 1) mod 3 while RT-OPT optimized it away. For
SPARKSkein, consider a procedure call Inject_Key(R * 2), (for procedure decla-
ration Inject_Key(X: in U32)), R is a variable of type U32, and U32 is a subtype
of Integer with range 0..INT_MAX; an overflow check for R * 2 is enough to guar-
antee the absence of both overflow and range error, while GNAT keeps both overflow
check and range check for such cases. There are other cases showing that RT-OPT is
better than GNAT’s optimizations.

In our initial evaluation (shown in the experiment table), GNAT produces fewer
run-time checks than RT-OPT; these inconsistencies turned out to be benign because
they are due to differences in how GNAT (vs RT-OPT) reports the need for checks
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and in how it assumes down-stream translation will interpret decorations for run-time
checks. Once observed, the inconsistencies are rectified by slightly modifying ⊆ to
match GNAT’s conventions, thus, resulting in a fully automatic approach to justify cor-
rectness of GNAT run-time check decorations. For completeness sake, we document the
inconsistencies that we found (and fixed) here. In procedure array subtype index, there is
an assignment A(0):=0, where the index type of A is a subtype of integer with range
1..10; thus, accessing A with the index 0 is out of its required range, so it will cause a
range error. GNAT gives a compile time warning as specified in Ada reference manual
without generating a range check; on the other hand, RT-OPT keeps this check (a similar
issue exists for assign subtype var). Another difference is due to a single run-time check
decoration in the GNAT AST that can lead downstream translation steps to introduce
run-time checking code that implements multiple checks, e.g., a single GNAT run-time
check AST decoration for an argument (both in and out) is interpreted as giving rise
to code for two checks for both passing in argument and passing out return value.

Lessons Learned: The fact that RT-OPT is better in some cases illustrates that, despite
its maturity, GNAT can still be improved further, e.g., by adopting the optimization
specified and implemented in RT-OPT; that is, the RT-OPT specification can be used as a
reference for implementing further optimizations in GNAT, and once implemented, they
can then be checked for conformance against the RT-OPT implementation. Furthermore,
in the case where new optimizations are added to GNAT that goes beyond RT-OPT
as presented here, those new optimizations can be added to RT-OPT in order to: (a)
mechanically verify that they are correct, and (b) further keep GNAT as a certifying
run-time check generator.

Our research work demonstrates the feasibility of engineering an approach and cor-
responding tools with mechanized correctness proofs that leverage recent advancements
and maturity of various formal method techniques and tools to make a direct impact in
significantly increasing confidence in industrial tools; in our case, the industrial tools
are used to develop critical systems that require the utmost level of integrity, thus, war-
ranting such effort. From a business perspective, we believe it is desirable as it adds to
the value proposition – the trustworthiness of GNAT compiler and associated SPARK
2014 is increased. Furthermore, we believe that the approach can eventually help in
tool qualification processes typically done in certifications and regulatory reviews asso-
ciated with standards (e.g., DO-178C in avionics) that increasingly recognize the value
of formal methods and an official tool qualification process.

Threats To Internal Validity: Our approach is predicated on the assumption that prac-
titioners are willing to trust the approach’s trust-base, which includes Coq and the
SPARK formal language semantics presented in Section 2.1. In addition, our current
implementation uses: (a) the parser, symbol resolver, and type checker of GNAT itself,
and (b) Jago to build program representations in Coq; both are not certified tools. Ide-
ally, a certified frontend can be developed to address this issue; this certified frontend is
orthogonal and out of the scope of the work presented here, and they can be addressed
in the future. Moreover, the ⊆ tool that compares AST-RT objects is manually inspected
instead of certified (it is small – 172 LoC, and its functionality is very simple); regard-
less, it should be considered as part of the trust-base at this point of time.

Threats To External Validity: One must also consider the extent to which the results
presented for the given test suite would extend to SPARK 2014 programs in general.
For this objective, program size and execution time are not really issues – the cost of
insertion of run-time checks is in general linear in the number of AST nodes. The in-
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terval analysis needed for optimization does add some additional complexity, but not
enough to significantly impact performance. On the other hand, a principle concern is
that our test suite provides appropriate coverage of all the different types of run-time
checks specified in the SPARK 2014 language reference manual. In addition, our lan-
guage subset needs to be expanded to eventually cover the full programming language
(in fact, this work represents our third iteration based on the initial work [6]).

4 Related Work

The idea of a certifying approach that generates evidence that can be machine-checked
goes back to proof-carrying code (PCC) [14] for memory safety. Since then, recent ad-
vancements and maturity in interactive theorem proving has enabled one to implement
certified systems directly inside a theorem prover with what widely acknowledged as a
relatively small trust-base footprint. One prominent work is the CompCert project [11],
which demonstrates that one can now feasibly develop a certified optimizing compiler
in Coq that guarantees the machine code it produces is behaviorally equivalent to its
C source code. To provide such guarantee, it starts with formalizing a large subset of
the C programming language – Clight [18], which is then used for proving program
behavior preservation throughout its compilation pipeline. The main difference to our
semantics work is that SPARK requires run-time checks as part of its semantics, which
complicated our formalization effort (as described in Section 2.1).

In contrast to CompCert where the certified compiler is developed in Coq, the GNAT
compiler is not developed in Coq. In fact, there are often a number of goals driving the
development of language tools – performance, scalability, reusability, maintainability,
etc. Many, if not most, of these often conflict with the goal of verifiability (and thus
“mechanized” verifiability). In addition, it is hard to imagine verifying tools with a lot
of legacy software (such as GNAT). Thus, there are strong forces against developing a
certified language tool, and in situations like these creating a certifying tool can be an
appropriate strategy when high-assurance is needed.

Some advantages of the certifying approach are that: (1) it can be adopted by ex-
isting/untrusted (high-performing) tools, and (2) it is much easier and a lot less costly
to develop. One main advantage of the certified approach is that its correctness evi-
dence (proof) is for all uses (runs) of the tool, while the certifying one is specific to a
particular use; this specificity is sufficient and in line with typical tool qualification pro-
cesses where tools are qualified for the particular use on the software being regulatorily
certified for standard compliance [9].

The closest work on run-time checks to ours is Verasco [10] – a certified run-time
check analyzer for C, whose design was inspired by Astrée [8]. RT-OPT employs a sim-
pler abstract numerical domain compared to Verasco; thus, it can potentially discharge
more verification conditions associated with run-time checks. This presents opportuni-
ties for RT-OPT future improvements. On the other hand, the soundness of Verasco was
proven, but not its completeness. Because SPARK (unlike C) includes implicit run-time
checks that must be accounted for in the semantics, completeness guarantees that all
run-time checks are as prescribed by (traceable to) the reference semantics.

5 Conclusions and Future Work

In this paper, we have illustrated how the formal semantics of SPARK can be used in
a mechanized proof infrastructure to check that ASTs produced by the GNAT compiler
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frontend having correctly incorporated decorations for run-time checks. This included
developing an optimizer with mechanized proofs of correctness that achieves run-time
check placement optimizations equal to or better than GNAT. The effectiveness of the
approach was demonstrated using programs from AdaCore test suites.

Our next step is to build a mechanically proved translation from SPARK into Com-
pCert’s Clight, which would then provide a verified compiler for SPARK 2014 to the
target languages supported by CompCert. In addition, the Jago translator also enables
one to develop in Coq an integrated verification environment that includes the abil-
ity to use Coq to mechanically verify that a SPARK program conforms to its formally
specified contracts. In situations where very high confidence is needed, this type of in-
frastructure could be used directly by verification engineers, or it could enable existing
automated tools like Kiasan [3] or GNATprove [13] to emit Coq proofs establishing that
their verification results for a particular program are correct.
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