AdaCore Blog

4 entries tagged with #Generics

by Yannick Moy, Martin Becker, Emanuel Regnath

Physical Units Pass the Generic Test

The support for physical units in programming languages is a long-standing issue, which very few languages have even attempted to solve. This issue has been mostly solved for Ada in 2012 by our colleagues Ed Schonberg and Vincent Pucci who introduced special aspects for specifying physical dimensions on types. This dimension system did not attempt to deal with generics though. As was noted by others, handling generics in a dimensional analysis that is, like in GNAT, a compile-time analysis with no impact on the executable size or running time, is the source of the problem of dimension handling. Together with our partners from Technical Universitat München, we have finally solved this remaining difficulty.

#GNAT     #typing   

by Jonas Attertun

Make with Ada 2017: Brushless DC Motor Controller

This project involves the design of a software platform that provides a good basis when developing motor controllers for brushless DC motors (BLDC/PMSM). It consist of a basic but clean and readable implementation of a sensored field oriented control algorithm. Included is a logging feature that will simplify development and allows users to visualize what is happening. The project shows that Ada successfully can be used for a bare-metal project that requires fast execution.

#Makers    #MakewithAda    #STM32    #embedded   

by Emmanuel Briot

Traits-Based Containers

This post describes the design of a new containers library. It highlights some of the limitations of the standard Ada containers, and proposes a new approach using generic packages as formal parameters to make these new containers highly configurable at compile time.

#Ada    #Containers    #Generics   

by Anthony Leonardo Gracio

How to prevent drone crashes using SPARK

The Crazyflie is a very small quadcopter sold as an open source development platform: both electronic schematics and source code are directly available on their GitHub and its architecture is very flexible. Even if the Crazyflie flies out of the box, it has not been developed with safety in mind: in case of crash, its size, its weight and its plastic propellers won’t hurt anyone! But what if the propellers were made of carbon fiber, and shaped like razor blades to increase the drone’s performance? In theses circumstances, a bug in the flight control system could lead to dramatic events. In this post, I present the work I did to rewrite the stabilization system of the Crazyflie in SPARK 2014, and to prove that it is free of runtime errors. SPARK also helped me to discover little bugs in the original firmware, one of which directly related with overflows. Besides the Crazyflie, this work could be an inspiration for others to do the same work on larger and more safety-critical drones.

#UAVs    #crazyflie    #SPARK    #Drones